设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 手机 数据 公司
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

为了不在直播中看到少儿不宜的景象,阿里做了这些(3)

发布时间:2017-01-07 02:24 所属栏目:19 来源:雷锋网
导读:2、敏感人脸检测 直播中的敏感人物管控属于人脸识别中(1:N)的问题,涉及人物载体形式多样,如动漫、印刷品、PS处理、翻拍屏幕等。人像的表情、姿态、光照、距离、遮挡、模糊等均不可控。 检测系统包括敏感人物入

2、敏感人脸检测

直播中的敏感人物管控属于人脸识别中(1:N)的问题,涉及人物载体形式多样,如动漫、印刷品、PS处理、翻拍屏幕等。人像的表情、姿态、光照、距离、遮挡、模糊等均不可控。

检测系统包括敏感人物入库及用户图片查询两大模块。其中敏感人物入库包括特征提取以及索引的建立。用户图片进行查询的时候,系统会返回与被查询人脸最相似的人物图片、名字及相似度,然后根据业务规则判断是否命中敏感人物。数据库由国内外各领域近2W知名人物人像图片组成,并按敏感程度划分不同等级,提供多层次的管控人名列表。

敏感人物识别主要包括两部分技术:一是人脸的特征提取,二是检索系统的构建。我们选用深度学习算法构建模型,采取五层卷积+两层全链接的基础网络结构,并融合年龄+性别等属性,融合回归及分类多种损失函数进行训练。这种multi-data, multi-task的训练方式充分挖掘训练数据的多维度信息,从而构建泛化性能更好的模型。

为了不在直播中看到少儿不宜的景象,阿里做了这些

敏感人物识别技术架构图

简要描述一下索引算法的流程:

  • 1、选一组哈希函数,将数据投影到离散的值上。所有的数据按哈希值分桶保存;

  • 2、检索时,被查询数据使用相同的哈希函数计算桶编号,取出桶里所有的数据,计算距离,排序,输出。

搜索性能:在百万数据集上,单次查询RT小于10ms,top10近邻正确率90%(以遍历检索为基准)。

算法系统主要用来管控政治敏感人物肖像,以及明星形象冒用,整个双十一期间算法系统命中产生的审核比为约0.01%。算法累计命中1613场直播,其中38场是正确命中。38场中,有17场背景包含管控人物形象,8场主播使用管控人物形象作为面具,7场与人民币相关,2场利用管控人物做广告,3场丑化管控人物,1场新闻类直播。 38场直播以业务管控标准判断有14场违规。

在整个双11期间,一共有15场涉及涉及99名核心管控人物的违规直播,只有1场未能被算法命中,算法整体召回率93.3%。由于众所周知的原因,政治敏感人物肖像的违规case不能展示。下面是一些用户使用明星照片参与连连看游戏的case:

为了不在直播中看到少儿不宜的景象,阿里做了这些

用户冒用明星形象参与连连看游戏的示意图

可能有人会觉得算法命中的准确率不高,这有两方面的原因:

  • 1)整体审核比很低,为了保障召回,所以将阈值设置得比较低;

  • 2)由于管控人物中包含一些女明星,容易出现主播与明星撞脸的尴尬,比如下面两位女主播很容易被识别为杨幂。

为了不在直播中看到少儿不宜的景象,阿里做了这些

和明星撞脸的女主播

二、多媒体处理集群的优化

为了平衡管控的时效性和计算资源之间的矛盾冲突,在实际操作中,我们对直播流每5秒截帧一次,图片保存在OSS上,同时推送消息给安全部接口。接口层将消息传递到规则层,在这里配置规则,决定截图需要调用的算法,以及对算法返回的结果进行判断,向审核系统发送消息。

为了不在直播中看到少儿不宜的景象,阿里做了这些

直播管控整体系统框图

我们面临的问题是5400路并发视频需要在5秒之内给出反馈,延时过长会错造成风险外露。图片算法服务本身相消耗计算资源多,是系统中的瓶颈,为此我们采取了以下应对手段。

1、通过消息接入解耦应用

同步接入算法服务是最简单的也最容易维护的,但会面临三个主要问题,1)同步接入给接入方带来了更多资源消耗;2)一旦算法服务不正常,会影响主流程。3)图片量已远远超过审核人力的极限,运营只能覆盖一些潜在重点风险视频,非重点风险视频流不需要流入审核。因此,虽然异步接入也会带来维护成本,但最终决定还是采用异步接入。

2、通过异步回调减少接入的成本

收到异步消息后,节点会调用算法服务,如果采用同步调用,会导致很多线程IO阻塞,需要大量的task,从而需要很多节点;采用异步回调服务,task线程可以立即回收,能减少很多task线程,从而节省节点。本项目中节省了约70%的节点。

3、通过批处理增加吞吐

在直播防控中单张截图会调用2个算法,之前的模式是每张图发2个消息。由于内部是可以并行且非阻塞过多个算法的,单张图一个算法和多个算法成本一样,所以我们将单张图调用多个算法的多条消息合并成一条。吞吐翻倍,按qps评估的机器成本也减半。

4、削峰和异常保护

虽然直播的峰值是5400路并发,考虑到截帧是每5秒进行一次,所以不必要按峰值准备容量。我们按照4s来平滑峰值,机器数也可以减少75%。除了常规的限流措施之外,考虑到审核页面每5秒刷新,如果超过4s没处理的消息选择丢弃,可以避免突发的消息堆积造成雪崩。所有的出错消息都会回写入SLS并同步到ODPS,以便之后的排查、分析和恢复。同时,我们将应用部署在两个机房来实现容灾。

为了不在直播中看到少儿不宜的景象,阿里做了这些

算法服务系统架构图

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读