人工智能看走眼的图像都长什么样?(2)
Clune 说道,对于分类来说,决策边界方法的难题是它太绝对,太武断。「你对神经网络所做的所有事情仅仅是训练它们在各类数据间画线,而不是对它们建模以识别出它们代表了豹子还是狮子。」像这样的系统可以通过一个确定的、用各种方式操作。为了愚弄狮子-豹子分析器,你可以拍一张狮子的照片并把它的特征推到奇特的极端,但仍然让它变现为正常的狮子:给它如同挖掘装备的,和校车一般大小的爪子,以及如同燃烧的太阳一般的长鬃毛。对人类来说,这是无法识别的,但对一个检查决策边界的人工智能系统来说,这只是一只极端的狮子罢了。 据我们所知,对抗性图像从未在真实世界形成过危害。但谷歌大脑的研究科学家,联合著述了《解释和利用对抗性实例》的 Ian Goodfellow 认为这种潜在的威胁从未被忽视。「研究社区,尤其是谷歌,正在严肃地对待这个问题,」Goodfellow 说道。「并且我们正努力致力于发展更好的防御措施。」大量组织,如伊隆·马斯克创立的 OpenAI,目前正在进行或发起关于对抗性攻击的研究。目前的结论是暂时没有新技术,但关于这些攻击在真实世界中能造成多大威胁,研究者们并未达成共识。例如,已存在大量攻击自动驾驶汽车的方法,它们并不依赖于计算复杂的摄动。 Papernot 认为,广泛存在于人工智能系统中的不足并不令人惊讶——分类器被训练成「拥有好的平均表现,而并不总是针对最坏情况的表现——这是典型的从安全角度出发的观点。」也就是说,比起它的平均表现,研究者较少担心系统发生灾难性的错误。「一种处理棘手的决策边界的方法,」Clune 说道,「是使得影像分类器知晓它们无法分类什么目标,而不是试图将数据拟合进某一类。」 与此同时,对抗性攻击也激发了更深层与概念化的思考。相同的愚弄式图像可以扰乱谷歌、Mobileye 或 Facebook独立开发的人工智能系统的「心智」,整体上揭示了当代人工智能特有的不足。 「仿佛所有这些不同的网络围坐一起,互相诉说为什么这些愚蠢的人类认识不到这个噪点图里实际上是一个海星,」Clune说道。「那相当有趣且神秘;所有这些网络都同意这些疯狂和非自然的影像实际上属于同类。那种程度的收敛真让人惊讶。」 对 Clune 的同事 Jason Yosinski来说,在愚弄式图像上的研究表明人工智能和自然界创造的智能之间存在令人惊讶的共同点。他注意到人工智能及它们的决策边界所犯的同类错误也存在于动物世界中,在这里动物们被「超常刺激」所愚弄。 这些刺激是自然界现象的人工版,怂恿动物违背它们的天性。这一行为首先于二十世纪五十年代被发现,当时研究者们用它使得鸟类忽视它们自己的蛋而更偏爱颜色更鲜艳的赝品,或者使得红肚棘鱼将垃圾当作竞争对手而进行争斗。只要有大的红肚绘在垃圾上面,鱼就将与其争斗。一些人曾认为人类成瘾行为,如快餐和色情文学,也是超常刺激的例子。鉴于此,人们可以认为人工智能犯的错误是自然而然的。但遗憾的是,我们需要人工智能有能力避免这些错误,表现得更好。 原文地址:http://www.theverge.com/2017/4/12/15271874/ai-adversarial-images-fooling-attacks-artificial-intelligence 注:相关网站建设技巧阅读请移步到建站教程频道。 (编辑:ASP站长网) |