今日头条算法原理(全文)(5)
另一方面,文本内容的标签可以直接帮助推荐特征,比如魅族的内容可以推荐给关注魅族的用户,这是用户标签的匹配。如果某段时间推荐主频道效果不理想,出现推荐窄化,用户会发现到具体的频道推荐(如科技、体育、娱乐、军事等)中阅读后,再回主feed,推荐效果会更好。因为整个模型是打通的,子频道探索空间较小,更容易满足用户需求。只通过单一信道反馈提高推荐准确率难度会比较大,子频道做的好很重要。而这也需要好的内容分析。 上图是今日头条的一个实际文本case。可以看到,这篇文章有分类、关键词、topic、实体词等文本特征。当然不是没有文本特征,推荐系统就不能工作,推荐系统最早期应用在Amazon,甚至沃尔玛时代就有,包括Netfilx做视频推荐也没有文本特征直接协同过滤推荐。但对资讯类产品而言,大部分是消费当天内容,没有文本特征新内容冷启动非常困难,协同类特征无法解决文章冷启动问题。 今日头条推荐系统主要抽取的文本特征包括以下几类。首先是语义标签类特征,显式为文章打上语义标签。这部分标签是由人定义的特征,每个标签有明确的意义,标签体系是预定义的。此外还有隐式语义特征,主要是topic特征和关键词特征,其中topic特征是对于词概率分布的描述,无明确意义;而关键词特征会基于一些统一特征描述,无明确集合。 另外文本相似度特征也非常重要。在头条,曾经用户反馈最大的问题之一就是为什么总推荐重复的内容。这个问题的难点在于,每个人对重复的定义不一样。举个例子,有人觉得这篇讲皇马和巴萨的文章,昨天已经看过类似内容,今天还说这两个队那就是重复。但对于一个重度球迷而言,尤其是巴萨的球迷,恨不得所有报道都看一遍。解决这一问题需要根据判断相似文章的主题、行文、主体等内容,根据这些特征做线上策略。 同样,还有时空特征,分析内容的发生地点以及时效性。比如武汉限行的事情推给北京用户可能就没有意义。最后还要考虑质量相关特征,判断内容是否低俗,色情,是否是软文,鸡汤? 上图是头条语义标签的特征和使用场景。他们之间层级不同,要求不同。 (编辑:ASP站长网) |