设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 手机 数据 公司
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

透彻理解深度学习背后的各种思想和思维

发布时间:2019-02-13 20:43 所属栏目:19 来源:AI火箭营
导读:深度神经网络在2012年兴起,当时深度学习模型能够在传统机器学习问题,例如图像分类和语音识别,击败最先进的传统方法。这要归功于支撑深度学习的各种哲学思想和各种思维。 抓住主要矛盾,忽略次要矛盾--池化 神经网络中经过池化后,得到的是突出化的概括

深度神经网络在2012年兴起,当时深度学习模型能够在传统机器学习问题,例如图像分类和语音识别,击败最先进的传统方法。这要归功于支撑深度学习的各种哲学思想和各种思维。

抓住主要矛盾,忽略次要矛盾--池化

神经网络中经过池化后,得到的是突出化的概括性特征。相比使用所有提取得到的特征,不仅具有低得多的维度,同时还可以防止过拟合。

比如max_pooling: 夜晚的地球俯瞰图,灯光耀眼的穿透性让人们只注意到最max的部分,产生亮光区域被放大的视觉错觉。故而 max_pooling 对较抽象一点的特征(如纹理)提取更好。

透彻理解深度学习背后的各种思想和思维

池化是一种降采样技术,减少参数数量,也可防止过拟合。如卷积核一样,在池化层中的每个神经元被连接到上面一层输出的神经元,只对应一小块感受野的区域。

透彻理解深度学习背后的各种思想和思维

池化体现了“抓住主要矛盾,忽略次要矛盾”哲学思想,在抽取特征的过程中,抓住图片特征中最关键的部分,放弃一些不重要、非决定性的小特征。

避免梯度消失--ReLU和批归一化

深度神经网络随着层数的增多,梯度消失是一个很棘手的问题。

ReLU主要好处是降低梯度弥散可能性和增加稀疏性。

透彻理解深度学习背后的各种思想和思维

线性整流函数ReLU(Rectified Linear Unit)的定义是h = max(0,a)其中a = Wx + b。

降低梯度消失可能性。特别是当a > 0时,此时梯度具有恒定值。作为对比,随着x的绝对值增加,sigmoid函数的梯度变得越来越小。ReLU的恒定梯度导致更快的学习。

透彻理解深度学习背后的各种思想和思维

增加稀疏性。当a≤ 0稀疏性出现。网络层中存在的这样单元越多,得到越多的表示稀疏性。另一方面,Sigmoid激活函数总是可能产生一些非零值,从而产生密集的表示。稀疏表示比密集表示更有益。

批归一化BN(Batch Normalization)很好地解决了梯度消失问题,这是由其减均值除方差保证的:

透彻理解深度学习背后的各种思想和思维

把每一层的输出均值和方差规范化,将输出从饱和区拉倒了非饱和区(导数),很好的解决了梯度消失问题。下图中对于第二层与第一层的梯度变化,在没有使用BN时,sigmoid激活函数梯度消失5倍,使用BN时,梯度只消失33%;在使用BN时,relu激活函数梯度没有消失。

透彻理解深度学习背后的各种思想和思维

集成学习的思想--Dropout

Dropout是可以避免过拟合的一种正则化技术。

透彻理解深度学习背后的各种思想和思维

Dropout是一种正则化形式,它限制了网络在训练时对数据的适应性,以避免它在学习输入数据时变得"过于聪明",因此有助于避免过度拟合。

dropout本质上体现了集成学习思想。在集成学习中,我们采用了一些"较弱"的分类器,分别训练它们。由于每个分类器都经过单独训练,因此它学会了数据的不同"方面",并且它们的错误也不同。将它们组合起来有助于产生更强的分类器,不容易过度拟合。随机森林、GBDT是典型的集成算法。

一种集成算法是装袋(bagging),其中每个成员用输入数据的不同子集训练,因此仅学习了整个输入特征空间的子集。

dropout,可以看作是装袋的极端版本​​。在小批量的每个训练步骤中,dropout程序创建不同的网络(通过随机移除一些单元),其像往常一样使用反向传播进行训练。从概念上讲,整个过程类似于使用许多不同网络(每个步骤一个)的集合,每个网络用单个样本训练(即极端装袋)。

在测试时,使用整个网络(所有单位)但按比例缩小。在数学上,这近似于整体平均。

显然这是一种非常好应用于深度学习的集成思想。

深层提取复杂特征的思维

今天深度学习已经取得了非常多的成功。深度神经网络,由AlexNet的8层到GoogLeNet的22层,再到ResNet的152层,随着层数的增加,top5错误率越来越低,达到3.57%。

由于图像和文本包含复杂的层次关系,因此在特征提取器中找到表示这些关系的公式并不容易。深度学习系统具有多层表示能力,它能够让网络模拟所有这些复杂的关系。

所以在学习和应用深度学习时,不要惧怕网络层次之深,正是这种深层结构才提取了图像、文本、语音等原始数据的抽象的本质特征。

透彻理解深度学习背后的各种思想和思维

神经网络构建一个逐步抽象的特征层次结构。

每个后续层充当越来越复杂的特征的过滤器,这些特征结合了前一层的特征。

  • 每一层对其输入应用非线性变换,并在其输出中提供表示。
  • 每一层中的每个神经元都会将信息发送到下一层神经元,下一层神经元会学习更抽象的数据。

所以你上升得越高,你学到的抽象特征就越多。。目标是通过将数据传递到多个转换层,以分层方式学习数据的复杂和抽象表示。感官数据(例如图像中的像素)被馈送到第一层。因此,每层的输出作为其下一层的输入提供。

深层次网络结构所具有的强大的抽象学习和表征能力

拿图像识别举例,在最底层,是像素这些东西。当我们一层一层往上的时候,慢慢的可能有边缘,再往上可能有轮廓,甚至对象的部件,等等。总体上,当我们逐渐往上的时候,它确实是不断在对对象进行抽象。而由现象到本质的抽象过程中,是需要很多阶段、很多过程的,需要逐步去粗取精、逐步凸显,才能最终完成。

层数为什么要那么多?这其中体现了从整体到部分、从具体到抽象的认识论哲学思想。

抽取共同的、本质性的特征,舍弃非本质的特征。这过程本来就是一个逐渐抽象的过程,抽丝剥茧、层层萃取、逐渐清晰、统一汇总,层数少抽取出的特征是模糊的、无法表征的!

非线性思维

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读