图卷积网络到底怎么做,这是一份极简的Numpy实现(3)
可以观察到,邻接矩阵中每一行的权重(值)都除以该行对应节点的度。我们接下来对变换后的邻接矩阵应用传播规则:
得到与相邻节点的特征均值对应的节点表征。这是因为(变换后)邻接矩阵的权重对应于相邻节点特征加权和的权重。大家可以自己动手验证这个结果。 整合 现在,我们将把自环和归一化技巧结合起来。此外,我们还将重新介绍之前为了简化讨论而省略的有关权重和激活函数的操作。 1. 添加权重 首先要做的是应用权重。请注意,这里的 D_hat 是 A_hat = A + I 对应的度矩阵,即具有强制自环的矩阵 A 的度矩阵。
如果我们想要减小输出特征表征的维度,我们可以减小权重矩阵 W 的规模:
2. 添加激活函数 本文选择保持特征表征的维度,并应用 ReLU 激活函数。
这就是一个带有邻接矩阵、输入特征、权重和激活函数的完整隐藏层! 在真实场景下的应用 最后,我们将图卷积网络应用到一个真实的图上。本文将向读者展示如何生成上文提到的特征表征。 1. Zachary 空手道俱乐部 Zachary 空手道俱乐部是一个被广泛使用的社交网络,其中的节点代表空手道俱乐部的成员,边代表成员之间的相互关系。当年,Zachary 在研究空手道俱乐部的时候,管理员和教员发生了冲突,导致俱乐部一分为二。下图显示了该网络的图表征,其中的节点标注是根据节点属于俱乐部的哪个部分而得到的,「A」和「I」分别表示属于管理员和教员阵营的节点。 Zachary 空手道俱乐部图网络 2. 构建 GCN 接下来,我们将构建一个图卷积网络。我们并不会真正训练该网络,但是会对其进行简单的随机初始化,从而生成我们在本文开头看到的特征表征。我们将使用 networkx,它有一个可以很容易实现的 Zachary 空手道俱乐部的图表征。然后,我们将计算 A_hat 和 D_hat 矩阵。
(编辑:ASP站长网) |