斯坦福开设AI法律课,人工智能能否成为法律主体?(2)
最重要的是,通过与大数据的连接,计算机程序能帮政府官员分析信息,并对潜在的战略性行为做出反应。 人工智能在反洗钱领域的应用探索,图片来自网络 然而,提升行政效率带来的同时,使用机器办公的规范性问题也被提上日程。 近期,加州最高法院大法官Mariano-Florentino Cuéllar就在其著作《人工智能与行政国家》(Artificial Intelligence and the Administrative State)中,提出了四点对决策过程中使用人工智能代理的担忧。 加州最高法院大法官Mariano-Florentino Cuéllar本人 首先,政府是否该依赖计算机程序做出某项决策?大法官认为,,这取决于决策目标的社会争议性。当前,立法者常针对是否该做出某项行政决定(如实施经济制裁)以及该决定会在不同层面导致的后果进行大量的辩论,人工智能将如何统筹政治博弈中的各方利益?这将是个不小的挑战。 第二点担忧和争议来自人工智能所谓的“机械理性”。由于在由算法主导的行政决策占越来越重要的位置,但机器减少人为因素干扰的同时,是否应该反思,那些所谓的“偏见”和“情感因素”是否都没有价值?一些可能被机器排除的“偏见”例如对弱者的同情,或许也同样值得关注。 第三,网络安全风险及其他不利影响。当行政越来越依赖数据收集和计算机程序,这可能带来更高的效率,也同时意味着受网络安全威胁的影响更大。 最后,如何向公众解释决策过程将遇到困难。试想一下,民主治理的内涵是通过对话和交流,每一种声音都有被决策者或公众理解、接受或拒绝的机会。除非人工智能的决策机制能依赖相对简单透明的结构,否则向公众提供决策如何产生的理由时,决策机构将会遇到相当的困难。 斯坦福法律课上的头脑风暴 面对这些担忧,身处硅谷中心的斯坦福大学已开始促成从学术研究到业界层面的合作:从2019年起,斯坦福大学政策研究中心新开设一门法律和计算机科学交叉的课程“算法管理:在规制型国家中的人工智能”。(Administering by Algorithm: Artificial Intelligence in the Regulatory State) 新开设算法管理课,图片自斯坦福法学院官网 这门课程由斯坦福法学院教授David Freeman Engstrom、Daniel E. Ho,和加州最高法院大法官Mariano-Florentino Cuéllar共同教授,并邀请了25位律师、计算机科学家和算法工程师来和大家共同探讨政府机构的技术研发和应用。 从左至右:斯坦福法学院教授Daniel E. Ho,David Freeman Engstrom和加州最高法院大法官Mariano-Florentino Cuéllar “我们现在面临着专业技术和认知上的不匹配。一方面在法律判决中我们需要法律机构能解释做出这样决策的原因,另一方面,人工智能和机器学习的工作机制尚未完全透明,”斯坦福法学院教授David Freeman Engstrom说道。 课堂的学生来自计算机科学、法律、政治、哲学等多个专业背景,需要通过团队合作,完成三部分任务。 首先,团队对100个最重要的联邦机构进行调查。当发现有算法参与决策的例子时,学生们开始测评这项技术具体归属哪一类:是属于人工智能,还是机器学习,还是一些其他的基础技术? 第二步,学生集体评估近期或中期政府机构中最可能部署人工智能的环节。 最后,转向规范性问题探讨:思考使用人工智能执行监管任务带来的法律、政策分析和哲学层面的挑战。例如,如何解决诸多程序性权利面临被机器行政架空的威胁等。 课程结束后,学生将完成一份报告,探讨行政机构在不同层面该如何应用人工智能技术。该报告将提交到无党派独立机构美国行政会议(Administrative Conference of the United States),并有望影响未来行政机构的政策。 【编辑推荐】
点赞 0 (编辑:ASP站长网) |