设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 手机 数据 公司
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

AI中台:一种敏捷的智能业务支持方案(分享实录)(8)

发布时间:2019-04-03 13:43 所属栏目:19 来源:井玉欣
导读:上文对中台实施路线进行了较为详细的介绍,本节将结合宜信内部智能投顾机器人的实践案例分析AI中台如何解决实际业务中的智能化需求。(由于智能投顾机器人是一个比较大的解决方案,此处做了适当抽象和缩减。) 4.1

上文对中台实施路线进行了较为详细的介绍,本节将结合宜信内部智能投顾机器人的实践案例分析AI中台如何解决实际业务中的智能化需求。(由于智能投顾机器人是一个比较大的解决方案,此处做了适当抽象和缩减。)

4.1 智能投顾机器人

AI中台:一种敏捷的智能业务支持方案(分享实录)

智能投顾是通过人工智能算法,在线提供自动化的资产组合配置建议和财富的管理服务。例如宜信旗下的智能理财产品:投米RA,就是通过智能化的方式帮助用户做科学的资产配置,从而实现财富管理方式的升级。

AI中台:一种敏捷的智能业务支持方案(分享实录)

智能投顾机器人涉及的AI服务及数据:

  • 智能交互,比如聊天机器人;

  • 客户画像,对于已有客户积累的公司来说这部分数据已经具备;

  • 筛选产品池,从现有理财产品池中筛选表现最优的产品,目前我们的理财产品池可以实现定时批量处理,自动化筛选出每个时期表现较好的精选产品;

  • 风险分析,作为一个金融领域的智能应用,风险分析尤为重要,用户能承受什么样的风险、基于该风险值能取得怎么样的回报等都要有合理的分析;

  • 资产配比,宜信目前有很多类型的资产,如基金、股票、房产等,还会进行全球化的资产配比,这就需要科学、理性、量化的分析,纳入风险因子进行综合考量,实现资产配比;

  • 投资产品推荐,参考用户画像里的个人信息、风险分析、资产配比等,为用户推荐最优化收益产品。

了解了智能投顾机器人的特征之后,我们结合AI中台的运转流程具体来看该案例的实施。

4.2 案例实施

业务理解

AI中台:一种敏捷的智能业务支持方案(分享实录)

在业务理解环节,首先需要考虑业务方案是什么样的?是否可复用?假设有可复用的方案,直接接入数据即可;如果没有可复用的方案,则需要设计新的方案。

如上图右侧的设计导图所示,需要考虑数据接口配置和数据源/角色配置。比如方案的数据接口有哪些?涉及到哪些服务?如何返回?每个结构里相关的角色有哪些?等等。

最重要的是考虑哪些服务是可复用的?假设公司内部已经有了一个聊天机器人,那么这里完全可以用它来接待客户,承担智能聊天的功能;此外财富产品画像服务也已经有了,直接把筛选产品词这部分产生的数据源接入进来即可;而资产配比服务,我们可能有相关的线下模型,并且已经将它进行服务化封装。以上这些服务都可复用,风险分析服务及后续投资产品推荐服务需要新建。

可复用的服务、需新建的服务明确之后,各个团队可以并行开发,角色配置也是如此,如此很快便可进入下一阶段,提高了开发的效率。

模型学习

AI中台:一种敏捷的智能业务支持方案(分享实录)

延续上一阶段的实践,对风险分析服务进行实际模型设计与训练。

从方案设计获取模型服务job,设计服务流程,它的输入是一个筛选后的用户画像,如上图右侧的结构所示,设计了两个比较简单的模型:一个是风险承受能力测评模型,这个模型之上还复用了一个已有的特征筛选模型,配合将用户画像里适合模型的有用特征提取出来并输入到模型中;另一个是流动性需求模型,评估资产需求,这里加了一个Python的代码片段对用户画像的数据进行加工再输入模型中。底下还新建了一个模型,对数据进行合并和输出。

AI中台:一种敏捷的智能业务支持方案(分享实录)

该模型可进行自动训练、可视化追踪。模型编排确定后,任务自动发送给工程师,可以在终端上通过交互式编程界面进行开发,之后对代码进行上传,在托管服务器可以将代码直接发布到训练集群上,自动进行训练,之后将训练结果推送到追踪服务器上,获取相关数据进行模型调优反复迭代,同时追踪服务器会记录每一次指标及模型,可选择最优的模型发布给监控中心。

运行监控

AI中台:一种敏捷的智能业务支持方案(分享实录)

运行监控主要对服务和方案进行封装、测试、发布,包括接口配置。可以单个服务测试,也可以整个方案一起进行测试。

AI中台:一种敏捷的智能业务支持方案(分享实录)

服务上线之后,通过提供可视化支持以及相关统计报表对整个性能进行合理监控,如上图所示,一旦发现报警,可回到模型学习中心,进行重新训练。

数据处理

AI中台:一种敏捷的智能业务支持方案(分享实录)

前面几个部分都跟数据处理相关,数据处理的部分直接交给数据中台来完成,AI中台只提供数据中台的访问接口,主要操作包括:通过数据中台的可视化工具观察数据,利用数据中台数据模型预处理数据,标注平台开展各模型数据标注。其最终目标是支持模型训练过程中访问数据中台绑定训练数据,比如文件、数据库以及其他数据存储系统。

上图右侧展示的是宜信已经开源的工具,包括DBus、Wormhole、Moonbox、Davinci,可以帮助大家更好地构建数据中台。

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读