基于PaddlePaddle搭建工业级ICNET应用 预测速度超TensorFlow 20%(3)
执行以下命令加载预训练模型进行训练,同时指定checkpoint保存路径:
Figure 10 训练损失下降图 测试完成模型的训练后, 进行效果测试: 执行以下命令在cityscape测试数据集上进行测试:
在进行30000次迭代后得到的模型在验证数据集上验证的结果为:mean_IoU=67.25%。符合论文中~67%的效果预期,本次实验在p40上完成,完成30000次迭代共耗时近20个小时。 框架对比下表展示了PaddlePaddle1.3和TensorFlow1.12的性能对比,以下对比实验使用的输入数据是1024x2048分辨率的图片,batch size为16: 小结本文介绍了图像语义分割实现的主流技术,并在PaddlePaddle上应用ICNET实现cityscape数据集的语义分析实践。另外,我们已经将PaddlePaddle的ICNET应用于领邦精密零件智能分拣机项目,实现了AI技术在产业落地。即基于PaddlePaddle实现了ICNET模型训练、部署,建立了客户自主数据标注->云端训练模型->下载模型->本地部署的全部流程。对比TensorFlow,在相同精度下我们的预测速度要快20%以上(25ms:33ms)。PaddlePaddle框架,不仅是一个性能优秀的深度学习框架,更能够基于对中国本土企业的深度学习需求的深入发掘,从而能够更好的满足国内企业用户的需求。希望PaddlePaddle在传统行业的AI赋能和现代化转型中贡献更多的力量。 参考
【编辑推荐】
点赞 0 (编辑:ASP站长网) |