我拿着一张贴纸就在AI面前隐身了,人工智能爆出最可笑bug(2)
上图所示为在 Inria 测试集中使用不同贴纸的效果对比示例。首先将 YOLOv2 检测器用于没有贴 patch 的图像中(第 1 行),然后是使用随机贴纸(第 2 行)以及生成的最佳贴纸的效果(第 3 行)。在大多数情况下,贴纸能够成功地将人员隐藏在探测器中。如果效果不好,则可能是贴纸没有和人对齐。因为在优化期间,贴纸的中心对齐是仅仅由图像边框确定的。 上图测试了印刷版贴纸在现实世界中的效果。一般情况下,效果还是不错的。由于上文所述的图像训练对齐的原因,将贴纸保持在正确位置似乎是非常重要的。 结果生成的 “补丁”,可以应用在衣服、包或其他物体上,佩戴这种 “补丁” 的人将成为隐形人 —— 使用 AI 检测算法无法检测到。 这种方法也可以用来隐藏某些对象。例如,如果监视系统被设计为检测物体而不是人,那么 “补丁” 也可以将汽车之类的物体隐藏起来。 可以想象,这种伎俩可以让骗子躲避安全摄像头。“我们的工作证明,使用对抗性补丁绕过摄像机监控系统是可能的,” 作者之一 Wiebe Van Ranst。 Van Ranst 说,将这种方法应用于现成的视频监控系统应该不会太难。“目前我们还需要知道使用的是哪种检测器。我们未来想做的是生成一个补丁,可以同时在多个检测器上工作,” 他说。“如果这种方法有效,那么这个补丁也很有可能对监控系统中使用的检测器有效。” 当然,这个 “补丁” 目前并非万无一失,如果它在画面中不是清晰可见的,或者角度发生了变化,AI 系统都能迅速 “发现” 画面中的人类。 不过,这项研究是学术界首次尝试使用 2D 打印技术将人类从检测系统中隐藏起来。之前的工作主要是使用带有特殊框架的眼镜来欺骗人脸识别软件,或使用对抗样本欺骗图像分类系统,例如用一张贴纸就能令 AI 将香蕉误认为是烤面包机,用几张贴纸就能将自动驾驶系统 “骗” 进反车道。 论文地址:https://arxiv.org/pdf/1904.08653.pdf 开源地址:https://gitlab.com/EAVISE/adversarial-yolo 【编辑推荐】
点赞 0 (编辑:ASP站长网) |