设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 手机 数据 公司
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

阿里开源!轻量级深度学习端侧推理引擎 MNN

发布时间:2019-05-08 07:24 所属栏目:19 来源:佚名
导读:近日,阿里正式开源轻量级深度学习端侧推理引擎MNN。 AI科学家贾扬清如此评价道:与 Tensorflow、Caffe2 等同时覆盖训练和推理的通用框架相比,MNN 更注重在推理时的加速和优化,解决在模型部署的阶段的效率问题,从而在移动端更高效地实现模型背后的业务

 阿里开源!轻量级深度学习端侧推理引擎 MNN

近日,阿里正式开源轻量级深度学习端侧推理引擎“MNN”。

AI科学家贾扬清如此评价道:“与 Tensorflow、Caffe2 等同时覆盖训练和推理的通用框架相比,MNN 更注重在推理时的加速和优化,解决在模型部署的阶段的效率问题,从而在移动端更高效地实现模型背后的业务。这和服务器端 TensorRT 等推理引擎的想法不谋而合。在大规模机器学习应用中,考虑到大规模的模型部署,机器学习的推理侧计算量往往是训练侧计算量的十倍以上,所以推理侧的优化尤其重要。”

MNN背后的技术框架如何设计?未来有哪些规划?今天一起来深入了解。

1、MNN是什么?

MNN 是一个轻量级的深度学习端侧推理引擎,核心解决深度神经网络模型在端侧推理运行问题,涵盖深度神经网络模型的优化、转换和推理。目前,MNN已经在手淘、手猫、优酷、聚划算、UC、飞猪、千牛等 20 多个 App 中使用,覆盖直播、短视频、搜索推荐、商品图像搜索、互动营销、权益发放、安全风控等场景,每天稳定运行上亿次。此外,菜鸟自提柜等 IoT 设备中也有应用。在 2018 年双十一购物节中,MNN 在天猫晚会笑脸红包、扫一扫、明星猜拳大战等场景中使用。

淘宝轻量级的深度学习端侧推理引擎 MNN 项目已经在Github开源,地址如下:

https://github.com/alibaba/MNN

2、MNN的优势

MNN 负责加载网络模型,推理预测返回相关结果,整个推理过程可以分为模型的加载解析、计算图的调度、在异构后端上高效运行。MNN 具有通用性、轻量性、高性能、易用性的特征:

通用性:

  • 支持 Tensorflow、Caffe、ONNX 等主流模型格式,支持 CNN、RNN、GAN 等常用网络;
  • 支持 86 个 TensorflowOp、34 个 CaffeOp ;各计算设备支持的 MNN Op 数:CPU 71 个,Metal 55 个,OpenCL 40 个,Vulkan 35 个;
  • 支持 iOS 8.0+、Android 4.3+ 和具有POSIX接口的嵌入式设备;
  • 支持异构设备混合计算,目前支持 CPU 和 GPU,可以动态导入 GPU Op 插件,替代 CPU Op 的实现;

轻量性:

  • 针对端侧设备特点深度定制和裁剪,无任何依赖,可以方便地部署到移动设备和各种嵌入式设备中;
  • iOS 平台上,armv7+arm64 静态库大小 5MB 左右,链接生成可执行文件增加大小 620KB 左右,metallib 文件 600KB 左右;
  • Android 平台上,so 大小 400KB 左右,OpenCL 库 400KB 左右,Vulkan 库 400KB 左右;

高性能:

  • 不依赖任何第三方计算库,依靠大量手写汇编实现核心运算,充分发挥 ARM CPU 的算力;
  • iOS 设备上可以开启 GPU 加速(Metal),支持iOS 8.0以上版本,常用模型上快于苹果原生的 CoreML;
  • Android 上提供了 OpenCL、Vulkan、OpenGL 三套方案,尽可能多地满足设备需求,针对主流 GPU(Adreno和Mali)做了深度调优;
  • 卷积、转置卷积算法高效稳定,对于任意形状的卷积均能高效运行,广泛运用了 Winograd 卷积算法,对 3x3 -> 7x7 之类的对称卷积有高效的实现;
  • 针对 ARM v8.2 的新架构额外作了优化,新设备可利用半精度计算的特性进一步提速;

易用性:

  • 完善的文档和实例;
  • 有高效的图像处理模块,覆盖常见的形变、转换等需求,一般情况下,无需额外引入 libyuv 或 opencv 库处理图像;
  • 支持回调机制,方便提取数据或者控制运行走向;
  • 支持运行网络模型中的部分路径,或者指定 CPU 和 GPU 间并行运行;

3、MNN核心介绍

3.1 模块设计

如上图所示,MNN 可以分为 Converter 和 Interpreter 两部分。

Converter 由 Frontends 和 Graph Optimize 构成。前者负责支持不同的训练框架,MNN 当前支持 Tensorflow(Lite)、Caffe 和 ONNX;后者通过算子融合、算子替代、布局调整等方式优化图。

Interpreter 由 Engine 和 Backends 构成。前者负责模型的加载、计算图的调度;后者包含各计算设备下的内存分配、Op 实现。在 Engine 和 Backends 中,MNN应用了多种优化方案,包括在卷积和反卷积中应用 Winograd 算法、在矩阵乘法中应用 Strassen 算法、低精度计算、Neon 优化、手写汇编、多线程优化、内存复用、异构计算等。

3.2 性能比较

采用业务常用的 MobileNet、SqueezeNet 和主流开源框架进行比较,结果如下图:

MNN 相比于 NCNN、Mace、Tensorflow Lite、Caffe2 都有 20% 以上的优势。我们其实更加聚焦在内部使用的业务模型优化上,针对人脸检测等模型进行深入优化,iPhone6 可以达到单帧检测 5ms 左右。

注:Mace、Tensorflow Lite、Caffe2 均使用截止 2019 年 3 月 1 日 GitHub 代码仓库的 master 分支;NCNN 由于编译问题采用 20181228 Release 预编译库。

4、MNN的开源历史

4.1 为什么要做端侧推理?

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读