设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 手机 数据 公司
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

盘点10大回归类型:总有一款深得你心(2)

发布时间:2019-06-10 02:54 所属栏目:19 来源:读芯术
导读:在概率统计理论中,假设这是一组独立同分布的随机变量,且以下是要研究的数据: 约翰图基(John Tukey)在1949年提出的观点(即大折刀法)是对一个样本做大量的研究,排除一个观察结果(并返回之前被排除的结果)。下面列

在概率统计理论中,假设这是一组独立同分布的随机变量,且以下是要研究的数据:

线性回归

约翰•图基(John Tukey)在1949年提出的观点(即“大折刀法”)是对一个样本做大量的研究,排除一个观察结果(并返回之前被排除的结果)。下面列出了从原始数据中获得的样本:

线性回归

每一项都有n个新样本,样本容量为n-1,且都可用来计算计量经济学感兴趣的统计数据的价值(样本容量减1):

线性回归

通过获得的统计值,可了解其分布和分布的特征,如期望、中值、分位数、散点和均方差。

那么,该使用哪一种回归?

盘点10大回归类型:总有一款深得你心

  • 如果模型需要连续的因变量:线性回归是最常见和最直接的使用类型。如果有一个连续的因变量,可能要首先考虑线性回归模型。然而,要注意线性回归的几个缺点,如对异常值和多重共线性很敏感。在这种情况下,最好使用更高级的线性回归变体,如岭回归、套索回归和偏最小二乘法回归(PLS)。
  • 如果模型需要分类因变量:应使用逻辑回归。这种模型最适合二元因变量。在进行更复杂的分类建模之前,最好先使用这种模型。分类变量的有些值可以根据特征放入可计数的不同组中。逻辑回归对因变量进行变换,然后使用最大似然估计法而非最小二乘法来估计参数。
  • 如果模型需要计数因变量:应使用泊松回归。计数数据往往遵循泊松分布,因此泊松回归很适合。使用泊松变量可以计算和评估发生率。

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读