设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 手机 数据 公司
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

心理测量?预知犯罪?AI可以减少京都之殇吗?

发布时间:2019-07-25 11:45 所属栏目:19 来源:读芯术
导读:图源:齐鲁网 一场火,两行泪。当地时间7月18日上午约10点30分,日本知名动画制作公司京都动画遭人纵火。事发时,工作室内共有74人在工作。截止目前,大火已造成34人死亡、36人受伤(含嫌犯在内),仅有6人成功脱险。 日本共同社称,这是日本自平成时代(19

 心理测量?预知犯罪?AI可以减少京都之殇吗?

图源:齐鲁网

一场火,两行泪。当地时间7月18日上午约10点30分,日本知名动画制作公司京都动画遭人纵火。事发时,工作室内共有74人在工作。截止目前,大火已造成34人死亡、36人受伤(含嫌犯在内),仅有6人成功脱险。

日本共同社称,这是日本自平成时代(1989年)以来造成死亡人数最多的纵火事件。

心理测量?预知犯罪?AI可以减少京都之殇吗?

图源:NHK

动漫美好的世界一秒崩塌,在这样一场无妄之灾面前,各届愤怒、痛惜,同时也在思考,在技术越来越先进,治安越来越好的当下,为何此类犯罪事件依旧层出不穷?难道不可以避免吗?

AI日益发展和成熟的今天,类似这样的犯罪事件能通过人工智能技术来减少,甚至是预测规避吗?

答案是:有可能。

从《少数派报告》到《心理测量者》,如何通过AI减少和避免犯罪行为

心理测量?预知犯罪?AI可以减少京都之殇吗?

在电影《少数派报告》中,背景设定为2054年的华盛顿特区,人人都用虹膜来作为身份证生存,所有服务基本都由AI来代替执行,AI成为人类不可或缺的辅助工具。

在应对犯罪行为方面,谋杀已经消失,未来可以预知。人类利用具有感知未来的超能力人——即AI“先知”,能侦查出人的犯罪企图,所以在罪犯犯罪之前,就已经被犯罪预防组织的警察逮捕并获刑。

同样是通过AI来应对犯罪行为,在日本动作犯罪题材动漫《心理测量者》中,背景则设定在未来的科技时代,人类由一个大AI系统管理——西比拉系统。

人类的心理状态和性格倾向都能被数值化,所有的监控摄像头都与西比拉系统相连,通过监视人类的色相浑浊程度和声音、视频等信息,来随时随地计算人类的每个心理状态和个性倾向所衡量的值。这个成为判断人类灵魂标准的测量值,人们称其为“Psycho-Pass”。西比拉系统能测定人的能力推荐适的职位,甚至可以给人做私人订制。

此外,这个系统还能监测“人类内心活动”,通过无处不在的监视器不断扫描每一个经过的市民的精神状态,并将其数值化,在剧中被称为心理指数。根据测量的心理指数,计算犯罪系数。

当犯罪指数超过一定数值,即使没有做出犯罪行为,也会被当作“潜在犯”被收容进与监狱无异的机构“矫正”。而“犯罪指数”过高的人类,则会被系统判定为没有挽救价值,直接清除,来减少犯罪率。

由此,衍生出"心理搜查官"一职,他们基本等同于警察的存在,而他们要执行的任务其实只有一点,按照系统的指示,将联结西比拉系统的枪瞄准罪犯。

不管是《少数派报告》,还是《心理测量者》,都通过一种AI预知犯罪行为、将罪犯扼杀在摇篮的方式,来减少甚至是避免犯罪案件发生。如果现代AI技术能达到这种程度,京阿尼的悲剧也许就可以避免了。

但是AI真的能像《少数派报告》和《心理测量者》一样,在人还没有执行犯罪行为之前将暴露出的相关人员进行识别逮捕吗?这个还有待考证。毕竟成功案例有限,犯罪心理学家这么多年来尚且摸不准,更别说需要通过学习来提升的AI了。

但随着AI技术的日渐成熟,越来越多的“不可能”被实现。

AI与“心理测量”相融合,能否实现“犯罪预测”?

讨论能否融合、实现“犯罪预测”前,首先,我们需了解一下AI和“心理测量”的本质和构成。

从本质上来讲,AI其实就是数据与算法的结合体。

截至今日,人工智能技术经历了前前后后三起两落的发展,每次兴起与衰落都伴随着技术的突破与瓶颈。

从1956年计算机技术日渐成熟背景下,以香农为代表的科学家在达特茅斯会议上,首次提出了“ArtificialIntelligence”的概念。到JeffreyHinton促进“深度神经网络”模型的发展,让AI在语音识别、图像识别等领域都有了飞跃式的发展。人工智能不断迎来一个又一个新的高速发展阶段。

人工智能的发展向我们诉说,数据、模型、算法是人工智能的基础,它的兴衰直接受数据、模型、算法的影响。数据、模型、算法是人工智能的根本。

小芯芯总结:人工智能在本质上讲就是在数据的基础上,利用深度学习模型,拟合出结果的计算过程。

在了解了人工智能之后,我们再来看看心理测量。

心理学中,心理测量是依据一定的心理学理论对人的某项素质进行测量,实现心理素质数字化的过程。

心理测量的准确性有赖于两个重要的方面,其一是理论模型,其二是数据模型。心理测量的前提是要搞清楚拟测量的心理变量的理论构思,也就是要在理论模型层面建构心理变量的结构。

在心理测量领域,有一个概念叫构思效度,意思是指概念构思的理论结构是否是合理。一个心理变量包含了哪些心理维度,这些维度的内涵是什么,外延是什么,在理论构思的过程中都要考虑清楚。只有考虑清楚这些问题,在测量的过程中才能做到有的放矢,才能保证测量的信效度。

搞清楚理论模型之后,通过设置的题目获得了相关维度的评分之后,就涉及如何看待这些评分。心理测量所得到的分数并不是绝对的结果,而是相对的结果,是相对于数据模型的结果,这个数据模型就是“常模”。也就是说对结果的解释,必须放到一个数据框架下进行解释,脱离数据模型对结果的解释都是毫无意义的。

例如,我们知道智商在130以上可以被称为天才,但是要确定这样的结果必须是在“平均分是100分,标准差是15分”这样一个数据模型的基础上。脱离这个模型,130将毫无意义。

我们惯常所使用的心理测量就是在这两个前提下进行的。我们所使用的心理测评问卷、方法在研发的过程中首先必须进行理论水平的界定,再将获得的数据放到一定的“常模”背景下才能获得具体的解释。

在理解了“人工智能”和“心理测量”的本质和构成之后,我们再来分析一下二者之间融合、实现“犯罪预测”的可能性。

心理测量的本质是结构化的理论和数据模型,人工智能的基础是数据和算法。站在结构化和数据的角度来看,心理测量和人工智能之间有天然的联系。

大数据背景下,人类本身使用数据的能力受制于自身有限的信息加工能力,但这恰恰是人工智能的长项,它能够将数量庞大的数据进行整合和计算,不但效率高,而且充分的信息也为心理测量的准确性保驾护航。

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读