设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 重新 试卷 文件
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

未来人类将被AI取代?一文读懂人工智能类型与发展阶段(3)

发布时间:2019-08-06 20:09 所属栏目:19 来源:刘志勇编译
导读:人工智能可以通过以下技术解决现实问题: 机器学习 深度学习 自然语言处理 机器人 模糊逻辑 专家系统 机器学习 机器学习 是一门借助机器解释、处理和分析数据以解决实际问题的科学。它的根源可以追溯到 1952 年就职

人工智能可以通过以下技术解决现实问题:

  1. 机器学习
  2. 深度学习
  3. 自然语言处理
  4. 机器人
  5. 模糊逻辑
  6. 专家系统

未来人类将被AI取代?一文读懂人工智能类型与发展阶段

机器学习

机器学习 是一门借助机器解释、处理和分析数据以解决实际问题的科学。它的根源可以追溯到 1952 年就职于 IBM 的 Arthur Samuel(被誉为“机器学习之父”)设计的一款西洋跳棋程序。机器学习有三种类型,分别为监督式学习、无监督式学习和强化学习。

毫无疑问,机器学习有助于人类克服知识和常识方面的瓶颈,而我们认为这些瓶颈会阻碍人类水平的人工智能的发展,因此许多人将机器学习视为人工智能的梦想。

深度学习

深度学习 是在高维数据上实现神经网络以获得洞察力并形成解决方案的过程。深度学习是机器学习的一个高级领域,可以用于解决更高级的问题,它是 Facebook、自动驾驶汽车、Siri、ALexa 等虚拟助手人脸认证算法背后的逻辑。

自然语言处理

自然语言处理 是一门从人类自然语言中提取洞察力,以便与机器交流并发展业务的科学。它也是人工智能中最古老、研究最多、要求最高的领域之一。开发智能系统的任何尝试,最终似乎都要解决一个问题,即使用何种形式的标准进行交流。例如,比起使用图形系统或基于数据系统的交流,语言交流通常是首选。

20 世纪四五十年代,人们使用有限自动机、形式语法和概率建立了自然语言理解的基础。但是,20 世纪五六十年代,早期使用机器翻译语言的尝试被实践证明是徒劳无功的。20 世纪 70 年代,当时的潮流趋于使用符号方法和随机方法。进入 21 世纪后,随着机器学习的兴起,自然语言处理迎来新的突破,并推动了随机过程、机器学习、信息提取和问答等现有方法的应用。比如,Twitter 使用自然语言处理技术来过滤推文中的恐怖主义的语言,Amazon 使用自然语言处理了解客户评论并改善用户体验。

机器人

人工智能机器人是在现实环境中行动的人工智能体,通过采取负责任的行动来产生结果。这一领域在计算几何和视觉方面与人工智能密切相关。目前,在机器人技术中,特别是嵌入式系统中,我们可以看到人工智能的许多体现,包括搜索算法、逻辑、专家系统、模糊逻辑、机器学习、神经网络、遗传算法、规划甚至博弈等。人形机器人 Sophia 就是机器人技术中人工智能的一个典例。

未来人类将被AI取代?一文读懂人工智能类型与发展阶段

模糊逻辑

模糊逻辑是一种基于“真实度”原则的计算方法,而非通常意义上的现代计算机逻辑,即布尔逻辑。换言之,我们所得到的结果往往并非非黑即白、非正即负,而是“在一定程度上”的结果。比如,机器人在实现目标的路径上可能会遇到阻碍,而机器人却必须坚持实现目标。换句话说,机器人的世界不仅是离散的,它也取决于某些 “自由度”,某些属性具有不同程度的变化,而不只是产生“开”或“关”、“是”或“否”的结果。

未来人类将被AI取代?一文读懂人工智能类型与发展阶段

模糊理论由 Lotfi Zadeh(1921~)于 1965 年提出,Zadeh 最初并没有想到模糊逻辑可以用于工程师的工业过程以控制和“智能”消费产品。后来,Mark Hopkins 在多个领域发现了模糊逻辑的应用,包括经济、农业、航天、核科学、生物医学等等。实际上,模糊逻辑目前已经实现了广泛的应用。

专家系统

专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题,简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。20 多年来,知识工程的研究,专家系统的理论和技术不断发展,应用渗透到几乎各个领域,包括化学、数学、物理、生物、医学、农业、气象、地质勘探、军事、工程技术、法律、商业、空间技术、自动控制、计算机设计和制造等众多领域,开发了几千个的专家系统,其中不少在功能上已达到,甚至超过同领域中人类专家的水平,并在实际应用中产生了巨大的经济效益。

专家系统使用 if-then 逻辑符号来解决复杂问题。它们不依赖于传统的程序编程。专家系统通常由人机交互界面、知识库、推理机、解释器、综合数据库、知识获取等 6 个部分构成。其中尤以知识库与推理机相互分离而别具特色。专家系统的体系结构随专家系统的类型、功能和规模的不同,而有所差异。专家系统的基本工作流程是,用户通过人机界面回答系统的提问,推理机将用户输入的信息与知识库中各个规则的条件进行匹配,并把被匹配规则的结论存放到综合数据库中。最后,专家系统将得出最终结论呈现给用户。

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读