设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 手机 数据 公司
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

人工智能可以从高性能计算学习的七个经验和教训(2)

发布时间:2019-08-22 12:06 所属栏目:19 来源:James Reinders
导读:各种技术的可用时间可能会影响能力和竞争。技术应用的太早或太晚都会严重影响竞争力。分阶段交付可能是升级系统以使用新技术的有力选择。股票经纪人可以告诉有关成本和价值平均的信息,这同样适用于计算,在不断增

各种技术的可用时间可能会影响能力和竞争。技术应用的太早或太晚都会严重影响竞争力。分阶段交付可能是升级系统以使用新技术的有力选择。股票经纪人可以告诉有关成本和价值平均的信息,这同样适用于计算,在不断增加投资的过程中有能力让企业在指导未来步骤的过程中学习。而企业了解供应商的长期路线图对于管理风险很重要。

知名记者Nicole Hemsoth写道,等待可能很重要。美国国家海洋和大气管理局(NOAA)敏锐地意识到人工智能可以提供帮助,但需要仔细考虑。她还指出,“这一评估过程与那些认为采用人工智能获益的大公司没有什么不同,但需要仔细考虑它是如何和在哪里适用的,以及它是否足够强化和稳定,以符合关键系统的要求。”

Tractica预测,在人工智能的广泛应用下,到2025年,全球软件的年收入将达到1058亿美元(相比之下,2018年仅为81亿美元)。他们预测电信、消费者、广告、商业服务、医疗保健和零售业将成为六大采用者。这表示制定一个多年发展计划可能是一个优势。

4.支持应用程序,并向用户学习

这不是说IT部门不支持他们的用户。但要说的是,许多IT组织缺乏支持人工智能等新兴用途的资金或章程。这造成了一个在高性能计算(HPC)世界中不太常见的差距。

如果人工智能对企业很重要,那么第一步应该是与用户和供应商合作,以找到支持企业所拥有系统的需求的方法。那么人们可能会惊讶地发现,使用已有的系统可以很好地工作,一个巨大的好处就是能够从中学习并成长。令人惊讶的是,这往往被忽视作为资源和试验场。即使正在进行学习,通常也会在IT和用户之间断开连接。与大多数高性能计算(HPC)组织一样,积极的IT组织密切参与支持和学习系统中最重要的工作负载。如果Python或Tensorflow对企业的用户很重要,那么是否了解如何为部署的平台获得最优化的版本?

5.协调实现代码现代化的实际计划

每当技术和机器快速发展时,代码也需要不断发展。代码现代化是一种编写可扩展代码的方法,该代码使用多级并行来充分利用现代硬件性能。人们将看到在高性能计算(HPC)社区内继续讨论和推广了多少代码现代化,以及它带来的积极影响。

致力采用高性能计算(HPC)的企业大量投资开源代码,都致力于改进新系统的开源代码。几年前,Andrew Jones曾在英特尔并行计算中心(Intel PCC)就职,英特尔并行计算中心的资金用于更新多核处理器的开源项目,Andrew Jones参与编辑了两本书籍,这两本书籍由世界知名团队通过工作来修改开源代码以实现现代化。

在这次旅程中,代码现代化比它最初出现的要重要得多,这是可以向IT组织提供的一个重要教训,无论现代化的实际工作是在内部完成的、希望在开放源代码中完成的、或在对外付费完成的。也可能是以上所有的混合。

有了这些见解,企业知道代码现代化对人工智能的应用也很重要。高性能计算(HPC)应用的经验表明,如果不投资代码(尤其是在技术快速变化的情况下),往往会加强供应商的锁定。与供应商锁定相比,企业支付费用改进自己的代码可能会更好。

6.将云与无云视为平衡行为,而不是选择

尽管一些供应商正在大肆宣传,但“云中的高性能计算(HPC)”的概念并未停止对高性能计算(HPC)硬件的投资。Intersect360 Research公司的调查报告表明,在2018年,大多数高性能计算(HPC)预算或者增加(46%),或者保持与前一年相同(38%),其中商业网站的增长最强劲。这就强化了这样一个事实,即必须具备计算基础设施方面的专业知识。

基于云计算的服务,包括AWS、Google、Azure和其他服务,提供各种平台来进行试验和早期部署。这可能会延迟拥有基础设施专业知识的需要,并给这些专业知识一个在组织内成长的机会。虽然基于云计算的人工智能无疑是技术孵化的重要家园,但随着人工智能计划的扩展,企业发现自己需要构建和维护基础设施。这对高性能计算(HPC)专家来说是不足为奇的。

当成本、性能和大量数据都很重要时,拥有自己的计算基础设施专业知识更加重要。忽视这种对专业知识的需求是有风险的。

7.总拥有成本(TCO)——不只是从高性能计算(HPC)吸取的教训

当提到关注获得绩效的成本(评估基准)、时间安装(现在将获得什么好处与等待)以及投资于采购和现代化以获得真正平衡的方法时,将会涉及总体拥有成本。整个系统的一部分问题需要安全性,这也不是一个特定的高性能计算(HPC)问题(尽管高性能计算中心考虑了很多)。

总拥有成本(TCO)是第七个经验和教训,尽管总拥有成本(TCO)肯定不是高性能计算(HPC)独有的,但它对高性能计算(HPC)来说确实非常重要。没有什么比考虑整体情况更能说明“系统方法”——硬件、软件、应用程序、安全性和人员。系统的价值是企业从中获得的净收益,而不是为实现它而投入的资本和费用(TCO)。

以系统方法为中心的七个经验和教训

经验丰富的高性能计算(HPC)中心在实现大型高性能系统的采购和运营方面取得了巨大成功。有效的系统方法是他们成功的关键。这些成为任何企业冒险大规模支持人工智能的关键技巧。

当人们深入了解这七个经验和教训时,将采用这样的系统方法:投资采购活动、开发和使用公正的基准、仔细考虑时机,大力投资支持应用程序和用户社区,制定计划实现代码现代化,并管理总拥有成本。

高性能计算(HPC)的这些经验和教训可以为企业提供更多的帮助。但是,企业也没有必要都成为高性能计算(HPC)技术的狂热者。

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读