设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 手机 数据 公司
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

一文看尽26种神经网络激活函数(从ReLU到Sinc)(2)

发布时间:2019-08-29 12:54 所属栏目:19 来源:机器之心
导读:视觉上类似于双曲正切(Tanh)函数,ArcTan 激活函数更加平坦,这让它比其他双曲线更加清晰。在默认情况下,其输出范围在-/2 和/2 之间。其导数趋向于零的速度也更慢,这意味着学习的效率更高。但这也意味着,导数的

视觉上类似于双曲正切(Tanh)函数,ArcTan 激活函数更加平坦,这让它比其他双曲线更加清晰。在默认情况下,其输出范围在-π/2 和π/2 之间。其导数趋向于零的速度也更慢,这意味着学习的效率更高。但这也意味着,导数的计算比 Tanh 更加昂贵。

16. Softsign

一文看尽26种神经网络激活函数(从ReLU到Sinc)

Softsign 是 Tanh 激活函数的另一个替代选择。就像 Tanh 一样,Softsign 是反对称、去中心、可微分,并返回-1 和 1 之间的值。其更平坦的曲线与更慢的下降导数表明它可以更高效地学习。另一方面,导数的计算比 Tanh 更麻烦。

17. SoftPlus

一文看尽26种神经网络激活函数(从ReLU到Sinc)

作为 ReLU 的一个不错的替代选择,SoftPlus 能够返回任何大于 0 的值。与 ReLU 不同,SoftPlus 的导数是连续的、非零的,无处不在,从而防止出现静默神经元。然而,SoftPlus 另一个不同于 ReLU 的地方在于其不对称性,不以零为中心,这兴许会妨碍学习。此外,由于导数常常小于 1,也可能出现梯度消失的问题。

18. Signum

一文看尽26种神经网络激活函数(从ReLU到Sinc)

激活函数 Signum(或者简写为 Sign)是二值阶跃激活函数的扩展版本。它的值域为 [-1,1],原点值是 0。尽管缺少阶跃函数的生物动机,Signum 依然是反对称的,这对激活函数来说是一个有利的特征。

19. Bent Identity

一文看尽26种神经网络激活函数(从ReLU到Sinc)

激活函数 Bent Identity 是介于 Identity 与 ReLU 之间的一种折衷选择。它允许非线性行为,尽管其非零导数有效提升了学习并克服了与 ReLU 相关的静默神经元的问题。由于其导数可在 1 的任意一侧返回值,因此它可能容易受到梯度爆炸和消失的影响。

20. Symmetrical Sigmoid

一文看尽26种神经网络激活函数(从ReLU到Sinc)

Symmetrical Sigmoid 是另一个 Tanh 激活函数的变种(实际上,它相当于输入减半的 Tanh)。和 Tanh 一样,它是反对称的、零中心、可微分的,值域在 -1 到 1 之间。它更平坦的形状和更慢的下降派生表明它可以更有效地进行学习。

21. Log Log

一文看尽26种神经网络激活函数(从ReLU到Sinc)

Log Log 激活函数(由上图 f(x) 可知该函数为以 e 为底的嵌套指数函数)的值域为 [0,1],Complementary Log Log 激活函数有潜力替代经典的 Sigmoid 激活函数。该函数饱和地更快,且零点值要高于 0.5。

22. Gaussian

一文看尽26种神经网络激活函数(从ReLU到Sinc)

高斯激活函数(Gaussian)并不是径向基函数网络(RBFN)中常用的高斯核函数,高斯激活函数在多层感知机类的模型中并不是很流行。该函数处处可微且为偶函数,但一阶导会很快收敛到零。

23. Absolute

一文看尽26种神经网络激活函数(从ReLU到Sinc)

顾名思义,绝对值(Absolute)激活函数返回输入的绝对值。该函数的导数除了零点外处处有定义,且导数的量值处处为 1。这种激活函数一定不会出现梯度爆炸或消失的情况。

24. Sinusoid

一文看尽26种神经网络激活函数(从ReLU到Sinc)

如同余弦函数,Sinusoid(或简单正弦函数)激活函数为神经网络引入了周期性。该函数的值域为 [-1,1],且导数处处连续。此外,Sinusoid 激活函数为零点对称的奇函数。

25. Cos

一文看尽26种神经网络激活函数(从ReLU到Sinc)

如同正弦函数,余弦激活函数(Cos/Cosine)为神经网络引入了周期性。它的值域为 [-1,1],且导数处处连续。和 Sinusoid 函数不同,余弦函数为不以零点对称的偶函数。

26. Sinc

一文看尽26种神经网络激活函数(从ReLU到Sinc)

Sinc 函数(全称是 Cardinal Sine)在信号处理中尤为重要,因为它表征了矩形函数的傅立叶变换(Fourier transform)。作为一种激活函数,它的优势在于处处可微和对称的特性,不过它比较容易产生梯度消失的问题。

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读