设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 重新 试卷 创业者
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

碾压99.8%人类对手,星际AI登上Nature,技术首次完整披露(2)

发布时间:2019-10-31 20:43 所属栏目:19 来源:乾明 鱼羊 栗子
导读:AlphaStar学会打星际,还是靠深度神经网络,这个网络从原始游戏界面接收数据 (输入) ,然后输出一系列指令,组成游戏中的某一个动作。 AlphaStar会通过概览地图和单位列表观察游戏。 采取行动前,智能体会输出要发

AlphaStar学会打星际,还是靠深度神经网络,这个网络从原始游戏界面接收数据 (输入) ,然后输出一系列指令,组成游戏中的某一个动作。

碾压99.8%人类对手,星际AI登上Nature,技术首次完整披露

AlphaStar会通过概览地图和单位列表观察游戏。

采取行动前,智能体会输出要发出的行动类型(例如,建造),将该动作应用于谁,目标是什么,以及何时发出下一个行动。

动作会通过限制动作速率的监视层发送到游戏中。

碾压99.8%人类对手,星际AI登上Nature,技术首次完整披露

而训练,则是通过监督学习和强化学习来完成的。

最开始,训练用的是监督学习,素材来自暴雪发布的匿名人类玩家的游戏实况。

这些资料可以让AlphaStar通过模仿星际天梯选手的操作,来学习游戏的宏观和微观策略。

最初的智能体,游戏内置的精英级 (Elite) AI就能击败,相当于人类的黄金段位 (95%) 。

而这个早期的智能体,就是强化学习的种子。

在它的基础之上,一个连续联赛 (Continuous League) 被创建出来,相当于为智能体准备了一个竞技场,里面的智能体互为竞争对手,就好像人类在天梯上互相较量一样:

从现有的智能体上造出新的分支,就会有越来越多的选手不断加入比赛。新的智能体再从与对手的竞争中学习。

这种新的训练形式,是把从前基于种群 (Population-Based) 的强化学习思路又深化了一些,制造出一种可以对巨大的策略空间进行持续探索的过程。

这个方法,在保证智能体在策略强大的对手面前表现优秀的同时,也不忘怎样应对不那么强大的早期对手。

随着智能体联赛不断进行,新智能体的出生,就会出现新的反击策略 (Counter Strategies) ,来应对早期的游戏策略。

一部分新智能体执行的策略,只是早期策略稍稍改进后的版本;而另一部分智能体,可以探索出全新的策略,完全不同的建造顺序,完全不同的单位组合,完全不同的微观微操方法。

除此之外,要鼓励联赛中智能体的多样性,所以每个智能体都有不同的学习目标:比如一个智能体的目标应该设定成打击哪些对手,比如该用哪些内部动机来影响一个智能体的偏好。

碾压99.8%人类对手,星际AI登上Nature,技术首次完整披露

△联盟训练的鲁棒性

而且,智能体的学习目标会适应环境不断改变。

神经网络给每一个智能体的权重,也是随着强化学习过程不断变化的。而不断变化的权重,就是学习目标演化的依据。

权重更新的规则,是一个新的off-policy强化学习算法,里面包含了经验重播 (Experience Replay) ,自我模仿学习 (Self-Imitation Learning) 以及策略蒸馏 (Policy Distillation) 等等机制。

历时15年,AI制霸星际

《星际争霸》作为最有挑战的即时战略(RTS)游戏之一,游戏中不仅需要协调短期和长期目标,还要应对意外情况,很早就成为了AI研究的“试金石”。

因为其面临的是不完美信息博弈局面,挑战难度巨大,研究人员需要花费大量的时间,去克服其中的问题。

DeepMind在Twitter中表示,AlphaStar能够取得当前的成绩,研究人员已经在《星际争霸》系列游戏上工作了15年。

碾压99.8%人类对手,星际AI登上Nature,技术首次完整披露

但DeepMind的工作真正为人所知,也就是这两年的事情。

2017年,AlphaGo打败李世石的第二年后,DeepMind与暴雪合作发布了一套名为PySC2的开源工具,在此基础上,结合工程和算法突破,进一步加速对星际游戏的研究。

之后,也有不少学者围绕星际争霸进行了不少研究。比如南京大学的俞扬团队、腾讯AI Lab、加州大学伯克利分校等等。

到今年1月,AlphaStar迎来了AlphaGo时刻。

在与星际2职业选手的比赛中,AlphaStar以总比分10-1的成绩制霸全场,人类职业选手LiquidMaNa只在它面前坚持了5分36秒,就GG了。

碾压99.8%人类对手,星际AI登上Nature,技术首次完整披露

全能职业选手TLO在落败后感叹,和AlphaStar比赛很难,不像和人在打,有种手足无措的感觉。

半年后,AlphaStar再度迎来进化。

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读