3分钟让你记住B+树索引和哈希索引的“爱恨情愁”
引言: B+树索引:通过根节点到叶节点逐层寻找,一步一缩小寻找的范围对象,直至找到目标 Hash索引:采用一定的哈希算法,,把键值更换成新的哈希值,检索时不需要像B+树那样依次从根节点到叶节点逐层寻找,一次性可以锁定相应的位置,找到目标值。 一、“独具特色”的B+树 B+树即Btree,它的树形结构如同一棵树木,但是倒立的树木。所以我们称之为B+树索引。它的寻找目标值方式依次由根节点到叶节点。 即就是:B+树左右支点都是相同数目的,所以称之为平衡的多叉树,如果分为两个分叉则被称为平衡的二叉树,即以下边树木为例,以中间躯干为中点,左右对称。由根到支点高度为1,任何节点的两个子树的高度为1,即由根到叶节点需要一层指向一层。各个节点之间用指针进行连接。根与叶子之间相连接的躯干被称之为指针。 以上两幅对比可以看出,B+树索引就像一棵倒立的树木,树根我们称之为根节点在上方,叶子我们称之为叶节点在下方。根节点连接的左右叶节点是对称的,所以称之为平衡的多叉树。跟与叶子之间的箭头叫做指针,从左边节点分析,可在第一层寻找数值应该在[15,20]之间,在第二层又进行细分,数值在[15,18]之间,以此类推找到目标值。可以看出B+树索引是通过范围来寻找目标值的。 B+树索引的应用场景和不适用场景:
二、“情有独钟”的哈希索引 哈希索引:哈希索引使用的是哈希算法,这里的算法指的是使用一定的函数,即通过寻找键值,来找到所寻找的对象。 哈希算法即散列函数,它就是将明文翻译成一段固定长度的字符串密码,且是单向的。因此采用哈希算法无论你之前明文有多长,经过算法输出后都是固定长度的字符串密码。代表算法有MD5,MD4….. 举个例子:比如说我们在百度上想要搜 佩奇的图片,当没有任何外在的标识情况下,在巨量的图片库里你想要找到佩奇的图片,你觉得是不是很困难。在这种情况下,我们可以通过哈希索引,它会将图片库里的图片转化成一串0-1的编码。这样你就会发现,图片相近编码也会变得很相近。这样我们在百度里一输入“佩奇”这样的编码,就会出来许多张佩奇的图片。这就是所谓的哈希索引。 优点:效率高,可以一次就直接找到目标 哈希索引示意图: 上图说明:当我们在百度中输入“佩奇”作为键值,然后所谓的Hash索引就会在图片库中找到标识符也为“佩奇”的编码,然后就可以搜索出佩奇的图片了。所以它不属于范围搜索。 哈希索引的应用场景和不适合场景:
三、各显神通的B+与哈希 根据上面两种索引的示意图可以得出以下的不同结论:
【编辑推荐】
点赞 0 (编辑:ASP站长网) |