Bokeh 很美。从概念上讲,Bokeh 类似于 ggplot,它们都是用图形语法来构建图片,但 Bokeh 具备可以做出专业图形和商业报表且便于使用的界面。为了说明这一点,我根据 538 Masculinity Survey 数据集写了制作直方图的代码:
- import pandas as pd
- from bokeh.plotting import figure
- from bokeh.io import show
-
- # is_masc is a one-hot encoded dataframe of responses to the question:
- # "Do you identify as masculine?"
-
- #Dataframe Prep
- counts = is_masc.sum()
- resps = is_masc.columns
-
- #Bokeh
- p2 = figure(title='Do You View Yourself As Masculine?',
- x_axis_label='Response',
- y_axis_label='Count',
- x_range=list(resps))
- p2.vbar(x=resps, top=counts, width=0.6, fill_color='red', line_color='black')
- show(p2)
-
- #Pandas
用 Bokeh 表示调查结果
红色的条形图表示 538 个人关于「你认为自己有男子汉气概吗?」这一问题的答案。9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。
我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。在制作美观且表现力强的图片时,我更倾向于使用 Bokeh——它已经帮我们完成了大量美化工作。
用 Pandas 表示相同的数据
蓝色的图是上面的第 17 行代码。这两个直方图的值是一样的,但目的不同。在探索性设置中,用 Pandas 写一行代码查看数据很方便,但 Bokeh 的美化功能非常强大。
Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。下图展示了一些随机趋势,其自定义程度更高:使用了图例和不同的颜色和线条。
Bokeh 还是制作交互式商业报表的绝佳工具。
Plotly
Plotly 非常强大,但用它设置和创建图形都要花费大量时间,而且都不直观。在用 Plotly 忙活了大半个上午后,我几乎什么都没做出来,干脆直接去吃饭了。我只创建了不带坐标标签的条形图,以及无法删掉线条的「散点图」。Ploty 入门时有一些要注意的点:
- 安装时要有 API 秘钥,还要注册,不是只用 pip 安装就可以;
- Plotly 所绘制的数据和布局对象是独一无二的,但并不直观;
- 图片布局对我来说没有用(40 行代码毫无意义!)
但它也有优点,而且设置中的所有缺点都有相应的解决方法:
- 你可以在 Plotly 网站和 Python 环境中编辑图片;
- 支持交互式图片和商业报表;
- Plotly 与 Mapbox 合作,可以自定义地图;
- 很有潜力绘制优秀图形。
以下是我针对这个包编写的代码:
- #plot 1 - barplot
- # **note** - the layout lines do nothing and trip no errors
- data = [go.Bar(x=team_ave_df.team,
- y=team_ave_df.turnovers_per_mp)]
-
- layout = go.Layout(
-
- title=go.layout.Title(
- text='Turnovers per Minute by Team',
- xref='paper',
- x=0
- ),
-
- xaxis=go.layout.XAxis(
- title = go.layout.xaxis.Title(
- text='Team',
- font=dict(
- family='Courier New, monospace',
- size=18,
- color='#7f7f7f'
- )
- )
- ),
-
- yaxis=go.layout.YAxis(
- title = go.layout.yaxis.Title(
- text='Average Turnovers/Minute',
- font=dict(
- family='Courier New, monospace',
- size=18,
- color='#7f7f7f'
- )
- )
- ),
-
- autosize=True,
- hovermode='closest')
-
- py.iplot(figure_or_data=data, layoutlayout=layout, filename='jupyter-plot', sharing='public', fileopt='overwrite')
-
-
-
- #plot 2 - attempt at a scatterplot
- data = [go.Scatter(x=player_year.minutes_played,
- y=player_year.salary,
- marker=go.scatter.Marker(color='red',
- size=3))]
-
- layout = go.Layout(title="test",
- xaxis=dict(title='why'),
- yaxis=dict(title='plotly'))
-
- py.iplot(figure_or_data=data, layoutlayout=layout, filename='jupyter-plot2', sharing='public')
-
- [Image: image.png]
表示不同 NBA 球队每分钟平均失误数的条形图
表示薪水和在 NBA 的打球时间之间关系的散点图
(编辑:ASP站长网)
|