设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 重新 试卷 文件
当前位置: 首页 > 运营中心 > 建站资源 > 优化 > 正文

浅谈几种常用负载均衡架构(3)

发布时间:2019-04-30 13:54 所属栏目:21 来源:Kingreatwill
导读:随机方式:请求随机分布到各个结点;在数据足够大的场景能达到一个均衡分布; 优点:实现简单、易水平扩展 缺点:同 Round Robin,无法用于有写的场景 应用场景:数据库负载均衡,也是只有读的场景 哈希方式:根据 ke

随机方式:请求随机分布到各个结点;在数据足够大的场景能达到一个均衡分布;

  • 优点:实现简单、易水平扩展
  • 缺点:同 Round Robin,无法用于有写的场景
  • 应用场景:数据库负载均衡,也是只有读的场景

哈希方式:根据 key 来计算需要落在的结点上,可以保证一个同一个键一定落在相同的服务器上;

  • 优点:相同 key 一定落在同一个结点上,这样就可用于有写有读的缓存场景
  • 缺点:在某个结点故障后,会导致哈希键重新分布,造成命中率大幅度下降
  • 解决:一致性哈希 or 使用 keepalived 保证任何一个结点的高可用性,故障后会有其它结点顶上来
  • 应用场景:缓存,有读有写

一致性哈希:在服务器一个结点出现故障时,受影响的只有这个结点上的 key,最大程度的保证命中率;如 twemproxy 中的 ketama方案;生产实现中还可以规划指定子 key 哈希,从而保证局部相似特征的键能分布在同一个服务器上;

  • 优点:结点故障后命中率下降有限
  • 应用场景:缓存

根据键的范围来负载:根据键的范围来负载,前 1 亿个键都存放到第一个服务器,1~2 亿在第二个结点。

  • 优点:水平扩展容易,存储不够用时,加服务器存放后续新增数据
  • 缺点:负载不均;数据库的分布不均衡;
  • (数据有冷热区分,一般最近注册的用户更加活跃,这样造成后续的服务器非常繁忙,而前期的结点空闲很多)
  • 适用场景:数据库分片负载均衡

根据键对服务器结点数取模来负载:根据键对服务器结点数取模来负载;比如有 4 台服务器,key 取模为 0 的落在第一个结点,1 落在第二个结点上。

  • 优点:数据冷热分布均衡,数据库结点负载均衡分布;
  • 缺点:水平扩展较难;
  • 适用场景:数据库分片负载均衡

纯动态结点负载均衡:根据 CPU、IO、网络的处理能力来决策接下来的请求如何调度。

  • 优点:充分利用服务器的资源,保证个结点上负载处理均衡
  • 缺点:实现起来复杂,真实使用较少

不用主动负载均衡:使用消息队列转为异步模型,将负载均衡的问题消灭;负载均衡是一种推模型,一直向你发数据,那么将所有的用户请求发到消息队列中,所有的下游结点谁空闲,谁上来取数据处理;转为拉模型之后,消除了对下行结点负载的问题。

  • 优点:通过消息队列的缓冲,保护后端系统,请求剧增时不会冲垮后端服务器;水平扩展容易,加入新结点后,直接取 queue 即可;

缺点:不具有实时性;

  • 应用场景:不需要实时返回的场景;比如,12036 下订单后,立刻返回提示信息:您的订单进去排队了...等处理完毕后,再异步通知;

比率(Ratio):给每个服务器分配一个加权值为比例,根椐这个比例,把用户的请求分配到每个服务器。当其中某个服务器发生第 2 到第 7 层的故障,BIG-IP 就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。

优先权(Priority):给所有服务器分组,给每个组定义优先权,BIG-IP 用户的请求,分配给优先级最高的服务器组(在同一组内,采用轮询或比率算法,分配用户的请求);当最高优先级中所有服务器出现故障,BIG-IP 才将请求送给次优先级的服务器组。这种方式,实际为用户提供一种热备份的方式。

最少的连接方式(Least Connection):传递新的连接给那些进行最少连接处理的服务器。当其中某个服务器发生第 2 到第 7 层的故障,BIG-IP 就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。

最快模式(Fastest):传递连接给那些响应最快的服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP 就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。

观察模式(Observed):连接数目和响应时间以这两项的最佳平衡为依据为新的请求选择服务器。当其中某个服务器发生第二到第 7 层的故障,BIG-IP 就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。

预测模式(Predictive):BIG-IP 利用收集到的服务器当前的性能指标,进行预测分析,选择一台服务器在下一个时间片内,其性能将达到最佳的服务器相应用户的请求。(被 BIG-IP 进行检测)

动态性能分配(Dynamic Ratio-APM):BIG-IP 收集到的应用程序和应用服务器的各项性能参数,动态调整流量分配。

动态服务器补充(Dynamic Server Act.):当主服务器群中因故障导致数量减少时,动态地将备份服务器补充至主服务器群。

服务质量(QoS):按不同的优先级对数据流进行分配。

服务类型(ToS): 按不同的服务类型(在 Type of Field 中标识)负载均衡对数据流进行分配。

规则模式:针对不同的数据流设置导向规则,用户可自行。

【责任编辑:庞桂玉 TEL:(010)68476606】
点赞 0

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读