Python 从爬虫到数据分析
大家好,我是大鹏,城市数据团联合发起人,致力于Python数据分析、数据可视化的应用与教学。 和很多同学接触过程中,我发现自学Python数据分析的一个难点是资料繁多,过于复杂。大部分网上的资料总是从Python语法教起,夹杂着大量Python开发的知识点,花了很多时间却始终云里雾里,不知道哪些知识才是真正有用的。本来以为上手就能写爬虫出图,却在看基础的过程中消耗了一周又一周,以至于很多励志学习Python的小伙伴牺牲在了入门的前一步。 于是,我总结了以下一篇干货,来帮助大家理清思路,提高学习效率。总共分为三大部分:做Python数据分析必知的语法,如何实现爬虫,怎么做数据分析。 1.必须知道的两组Python基础术语 A.变量和赋值 Python可以直接定义变量名字并进行赋值的,例如我们写出a = 4时,Python解释器干了两件事情:
用一张示意图表示Python变量和赋值的重点: 例如下图代码,“=”的作用就是赋值,同时Python会自动识别数据类型:
B.数据类型 在初级的数据分析过程中,有三种数据类型是很常见的:
它们分别是这么写的: 列表(list):
list是一种有序的集合,里面的元素可以是之前提到的任何一种数据格式和数据类型(整型、浮点、列表……),并可以随时指定顺序添加其中的元素,其形式是:
字典(dict):
字典使用键-值(key-value)存储,无序,具有极快的查找速度。以上面的字典为例,想要快速知道周杰伦的年龄,就可以这么写:
dict内部存放的顺序和key放入的顺序是没有关系的,也就是说,"章泽天"并非是在"刘强东"的后面。 DataFrame: DataFrame可以简单理解为Excel里的表格格式。导入pandas包后,字典和列表都可以转化为DataFrame,以上面的字典为例,转化为DataFrame是这样的:
和excel一样,DataFrame的任何一列或任何一行都可以单独选出进行分析。 以上三种数据类型是python数据分析中用的最多的类型,基础语法到此结束,接下来就可以着手写一些函数计算数据了。 2.从Python爬虫学循环函数 掌握了以上基本语法概念,我们就足以开始学习一些有趣的函数。我们以爬虫中绕不开的遍历url为例,讲讲大家最难理解的循环函数for的用法: A.for函数 for函数是一个常见的循环函数,先从简单代码理解for函数的用途:
(编辑:ASP站长网) |