Python中的十大图像处理工具(2)
OpenCV( 开源计算机视觉库,Open Source Computer Vision Library)是计算机视觉应用中使用最广泛的库之一。OpenCV-Python是OpenCV的python API。 OpenCV-Python不仅速度快(因为后台由用C / C ++编写的代码组成),也易于编码和部署(由于前端的Python包装器)。 这使其成为执行计算密集型计算机视觉程序的绝佳选择。 使用说明文档:https://github.com/abidrahmank/OpenCV2-Python-Tutorials 用法举例:使用Pyramids创建一个名为'Orapple'的新水果的功能 6. SimpleCV SimpleCV也是用于构建计算机视觉应用程序的开源框架。 通过它可以访问如OpenCV等高性能的计算机视觉库,而无需首先了解位深度、文件格式或色彩空间等。学习难度远远小于OpenCV,并且正如他们的标语所说,“ 它使计算机视觉变得简单 ”。支持SimpleCV的一些观点是: 即使是初学者也可以编写简单的机器视觉测试 摄像机、视频文件、图像和视频流都可以交互操作 使用说明文档:https://simplecv.readthedocs.io/en/latest/ 用法举例 7. Mahotas Mahotas是另一个用于Python的计算机视觉和图像处理库。 它包含传统的图像处理功能(如滤波和形态学操作)以及用于特征计算的更现代的计算机视觉功能(包括兴趣点检测和局部描述符)。 该接口使用Python,适用于快速开发,但算法是用C ++实现的,并且针对速度进行了优化。Mahotas库运行很快,它的代码很简单,(对其它库的)依赖性也很小。 建议阅读他们的官方文档以了解更多内容。 使用说明文档: https://mahotas.readthedocs.io/en/latest/install.html 用法举例 Mahotas库使用简单的代码来完成工作。 对于“ 寻找Wally ”的问题,Mahotas完成的得很好,而且代码量非常小。 8. SimpleITK ITK(Insight Segmentation and Registration Toolkit)是一个开源的跨平台系统,为开发人员提供了一整套用于图像分析的软件工具。 其中, SimpleITK是一个建立在ITK之上的简化层,旨在促进其在快速原型设计、教育以及脚本语言中的使用。SimpleITK是一个包含大量组件的图像分析工具包,支持一般的过滤操作、图像分割和配准。 SimpleITK本身是用C++编写的,但可用于包括Python在内的大量编程语言。 使用说明文档:https://github.com/hhatto/pgmagick 这里有大量说明了如何使用SimpleITK进行教育和研究活动的Jupyter notebook。notebook中演示了如何使用SimpleITK进行使用Python和R编程语言的交互式图像分析。 用法举例: 下面的动画是使用SimpleITK和Python创建的可视化的严格CT / MR配准过程。 9. pgmagick pgmagick是GraphicsMagick库基于Python的包装器。GraphicsMagick 图像处理系统有时被称为图像处理的瑞士军刀。它提供了强大而高效的工具和库集合,支持超过88种主要格式图像的读取、写入和操作,包括DPX,GIF,JPEG,JPEG-2000,PNG,PDF,PNM和TIFF等重要格式。 使用说明文档:https://github.com/hhatto/pgmagick 用法举例:图片缩放、边缘提取 图片缩放 边缘提取 10. Pycairo Pycairo是图形库cairo的一组python绑定。 Cairo是一个用于绘制矢量图形的2D图形库。 矢量图形很有趣,因为它们在调整大小或进行变换时不会降低清晰度。Pycairo库可以从Python调用cairo命令。 使用说明文档:https://github.com/pygobject/pycairo 用法:Pycairo可以绘制线条、基本形状和径向渐变 以上就是一些免费的优秀图像处理Python库。有些很知名,你可能已经知道或者用过,有些可能对你来说还是新的。那正好现在就上手操作一下,试一试吧! 相关报道: https://towardsdatascience.com/image-manipulation-tools-for-python-6eb0908ed61f 【本文是51CTO专栏机构大数据文摘的原创文章,微信公众号“大数据文摘( id: BigDataDigest)”】
戳这里,看该作者更多好文
(编辑:ASP站长网) |