十个编码过程中的“坑”,一篇文章帮你填平了!(2)
为了急着做分析,你可能囫囵吞枣地弄出结果,然后把结果交给客户或老板;一个星期后,他们找到你说“能改一下这里吗”或“能更新一下这个吗”。这时你看看代码,完全不记得当初为什么这么写了。现在想象一下,其他人还必须运行你的代码……
解决方案:在提供分析之后,也要花费额外的时间来记录编码时做了什么。你会庆幸自己这么做了的,其他人更会感谢你!这样你会看起来更专业。 9. 将数据保存为csv或pickle格式 回到数据,毕竟我们在谈数据科学。就像函数和for循环一样,CSV和pickle文件很常用,但它们实际上并不是很好。CSV不包含架构,因此每个人都必须再次解析数字和日期。Pickles解决了这个问题但只能在python中使用并且不会被压缩。两者都不是存储大型数据集的好格式。
解决方案: 对数据模式使用 parquet(https://github.com/dask/fastparquet)或其他二进制数据格式,这两者是压缩数据的理想格式。d6tflow自动将任务的数据输出保存为parquet,这样就不用再操心格式问题了。 10. 使用jupyternotebooks笔记本 这一点也许颇具争议:jupyternotebooks和CSV一样普遍。很多人都使用它们。但这并不意味它们就是很好的工具。jupyternotebooks助长了上面提到的软件工程中的坏习惯,特别是:
解决方案: 使用pycharm (https://www.jetbrains.com/pycharm/)和/或spyder(https://www.spyder-ide.org/)。
(编辑:ASP站长网) |