燃爆!17行Python代码做情感分析?你也可以的(4)
发布时间:2019-06-28 16:36 所属栏目:21 来源:IT世界圈
导读:2.成语情感分析方面,我专门挑选的是一些比较难从字面理解的,容易混淆情感的成语(比如差强人意被判定为消极),这些也是高考常考的内容。虽然最后模型正确率只有一般,但是我认为是可以接受的,适当增加成语语句作
2.成语情感分析方面,我专门挑选的是一些比较难从字面理解的,容易混淆情感的成语(比如差强人意被判定为消极),这些也是高考常考的内容。虽然最后模型正确率只有一般,但是我认为是可以接受的,适当增加成语语句作为训练语料会使模型"更懂"中文。 大家有兴趣的可以试一试一些比较容易从字面理解情感的成语,我觉得得分会比本次评测的结果要好。 3.转折语句情感分析本身也是对模型的一种挑战,实测效果为65分,个人觉得模型对于像“但是”,“虽然”这样的词语没有足够的attention,因为这些转折词背后的语义往往才是最影响整个句子的情感的,最终评分65分,个人认为模型在这方面表现一般。 4.评分最好看的是具体场景情感分析,大概预训练语料中有大量的淘宝评价?像杀马特 20 科比 这些小字眼是判定情感的关键,而模型也确实捕捉到并判断出来了,这点比较让我惊喜。
(编辑:ASP站长网) |
相关内容
网友评论
推荐文章
热点阅读