详解大数据处理中的Lambda架构和Kappa架构(2)
维护 Lambda 架构的复杂性在于我们要同时维护两套系统架构:批处理层和速度层。我们已经说过了,在架构中加入批处理层是因为从批处理层得到的结果具有高准确性,而加入速度层是因为它在处理大规模数据时具有低延时性。 那我们能不能改进其中某一层的架构,让它具有另外一层架构的特性呢? 例如,改进批处理层的系统让它具有更低的延时性,又或者是改进速度层的系统,让它产生的数据视图更具准确性和更加接近历史数据呢? 另外一种在大规模数据处理中常用的架构——Kappa 架构(Kappa Architecture),便是在这样的思考下诞生的。 Kappa 架构 Kappa 架构是由 LinkedIn 的前首席工程师杰伊·克雷普斯(Jay Kreps)提出的一种架构思想。克雷普斯是几个著名开源项目(包括 Apache Kafka 和 Apache Samza 这样的流处理系统)的作者之一,也是现在 Confluent 大数据公司的 CEO。 克雷普斯提出了一个改进 Lambda 架构的观点:
他根据自身多年的架构经验发现,我们是可以做到这样的改进的。 像 Apache Kafka 这样的流处理平台是具有永久保存数据日志的功能的,通过平台的这一特性,我们可以重新处理部署于速度层架构中的历史数据。 下面就以 Apache Kafka 为例来讲述整个全新架构的过程。 第一步,部署 Apache Kafka,并设置数据日志的保留期(Retention Period)。这里的保留期指的是你希望能够重新处理的历史数据的时间区间。 例如,如果你希望重新处理最多一年的历史数据,那就可以把 Apache Kafka 中的保留期设置为 365 天。如果你希望能够处理所有的历史数据,那就可以把 Apache Kafka 中的保留期设置为“永久(Forever)”。 第二步,如果我们需要改进现有的逻辑算法,那就表示我们需要对历史数据进行重新处理。 我们需要做的就是重新启动一个 Apache Kafka 作业实例(Instance)。这个作业实例将从头开始,重新计算保留好的历史数据,并将结果输出到一个新的数据视图中。我们知道 Apache Kafka 的底层是使用 Log Offset 来判断现在已经处理到哪个数据块了,所以只需要将 Log Offset 设置为 0,新的作业实例就会从头开始处理历史数据。 第三步,当这个新的数据视图处理过的数据进度赶上了旧的数据视图时,我们的应用便可以切换到从新的数据视图中读取。 第四步,停止旧版本的作业实例,并删除旧的数据视图。 与 Lambda 架构不同的是,Kappa 架构去掉了批处理层这一体系结构,而只保留了速度层。你只需要在业务逻辑改变又或者是代码更改的时候进行数据的重新处理。 在讲述完 Kappa 架构之后,我想强调一下,Kappa 架构也是有着它自身的不足的。 因为 Kappa 架构只保留了速度层而缺少批处理层,在速度层上处理大规模数据可能会有数据更新出错的情况发生,这就需要我们花费更多的时间在处理这些错误异常上面。 还有一点,Kappa 架构的批处理和流处理都放在了速度层上,这导致了这种架构是使用同一套代码来处理算法逻辑的。所以 Kappa 架构并不适用于批处理和流处理代码逻辑不一致的场景。 小结 在本文中,我们简述了 Lambda 架构和 Kappa 架构这两种大规模数据处理架构,它们都各自有着自身的优缺点。我们需要按照实际情况来权衡利弊,看看在业务中到底需要使用到哪种架构。 如果你所面对的业务逻辑是设计一种稳健的机器学习模型来预测即将发生的事情,那么你应该优先考虑使用 Lambda 架构,因为它拥有批处理层和速度层来确保更少的错误。 如果你所面对的业务逻辑是希望实时性比较高,而且客户端又是根据运行时发生的实时事件来做出回应的,那么你就应该优先考虑使用 Kappa 架构。
(编辑:ASP站长网) |