导读
提到数据科学的python包,大家想到的估计是numpy,pandas,scikit-learn之类的,这里给大家介绍一些不常用,但是非常有用的python包,就像是痒痒挠,虽然大部分时间用不上,但是真要用起来,还是挺爽的。
Python是个了不起的语言。事实上,这是世界上发展最快的语言之一(感觉没有之一,就是最快的)。在数据科学领域和开发领域,一次又一次的为我们提供便利。整个Python的生态和库使之成为所有用户都适用(初学者和高级用户)。Python之所以这么成功,原因之一就在于它的库,让Python变得灵活快速。
这篇文章中,我们会看一些不太常用的数据科学的库,除了pandas,scikit-learn,matplotlib等。尽管说到数据科学,我们想到的就是pandas和scikit-learn,了解一下其他的python的库也没什么坏处。下面就是另外一些数据科学中可能会用到的Python库。
Wget
从网络获取数据是Python科学家非常重要的任务。Wget是一个免费的工具,可以从Web上非交互式的下载文件,支持HTTP, HTTPS, 和 FTP协议,同样支持HTTP代理。由于是非交互式的,所以可以后台运行,用户没有登录也可以。所以下次你需要从网上下载图片的时候,可以试试wget。
安装:
- $ pip install wget
例子:
- import wget
- url = 'http://www.futurecrew.com/skaven/song_files/mp3/razorback.mp3'
- filename = wget.download(url)
- 100% [................................................] 3841532 / 3841532
- filename
- 'razorback.mp3'
Pendulum
这个是干啥的呢,你在处理日期时间的时候搞得头大的时候,Pendulum就很适合你,这包是用来简化日期时间的操作的,具体使用可以看 这里 。
安装:
- $ pip install pendulum
例子:
- import pendulum
- dt_toronto = pendulum.datetime(2012, 1, 1, tz='America/Toronto')
- dt_vancouver = pendulum.datetime(2012, 1, 1, tz='America/Vancouver')
- print(dt_vancouver.diff(dt_toronto).in_hours())
- 3
imbalanced-learn
大多数的分类问题中,当所有的类别中的样本的数量大致相同时,效果是最好的,也就是样本均衡。但是在实际情况中,往往都是非均衡的数据,这往往会影响训练的过程以及后面的预测。幸好,这个库可以帮我们解决这个问题。这个和scikit-learn兼容,是scikit-learn-contrib的一部分。下次可以试试。
安装:
- pip install -U imbalanced-learn
- # or
- conda install -c conda-forge imbalanced-learn
例子:
请参考文档。
FlashText
在清洗NLP相关的数据的时候,往往需要替换一些关键词或者提取一些关键词。通常,可以用正则表达式来干这个活,不过正则条件的数量上千的时候,就会很头大。FlashText是基于FlashText算法的一个模块,提供了这种情况下的一个替代工具,FlashText最好的地方在于运行时间是和搜索的条件的数量不相关的。更多的信息可以看这里。
安装:
- $ pip install flashtext
例子:
提取关键词
- from flashtext import KeywordProcessor
- keyword_processor = KeywordProcessor()
- # keyword_processor.add_keyword(<unclean name>, <standardised name>)
- keyword_processor.add_keyword('Big Apple', 'New York')
- keyword_processor.add_keyword('Bay Area')
- keywords_found = keyword_processor.extract_keywords('I love Big Apple and Bay Area.')
- keywords_found
- ['New York', 'Bay Area']
替换关键词
- keyword_processor.add_keyword('New Delhi', 'NCR region')
- new_sentence = keyword_processor.replace_keywords('I love Big Apple and new delhi.')
- new_sentence
- 'I love New York and NCR region.'
Fuzzywuzzy
名字听起来怪怪的,不过在字符匹配的时候,用起来还是爽爽的。可以轻松的实现字符比例,token比例等。还可以在不同的数据集中进行匹配。
安装:
- $ pip install fuzzywuzzy
例子:
- from fuzzywuzzy import fuzz
- from fuzzywuzzy import process
- # Simple Ratio
- fuzz.ratio("this is a test", "this is a test!")
- 97
- # Partial Ratio
- fuzz.partial_ratio("this is a test", "this is a test!")
- 100
PyFlux
(编辑:ASP站长网)
|