设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 手机 数据 公司
当前位置: 首页 > 服务器 > 搭建环境 > Windows > 正文

关于/dev/urandom 的流言终结(2)

发布时间:2019-05-07 20:29 所属栏目:117 来源:Thomas Hühn
导读:因为我们使用的几乎所有的算法都并不是 信息论安全性 information-theoretic security 的。它们只能提供计算意义上的安全。我能想到为数不多的例外就只有 Shamir 密钥分享和 一次性密码本 One-time pad (OTP)算法

因为我们使用的几乎所有的算法都并不是信息论安全性information-theoretic security 的。它们“只能”提供计算意义上的安全。我能想到为数不多的例外就只有 Shamir 密钥分享和一次性密码本One-time pad(OTP)算法。并且就算前者是名副其实的(如果你实际打算用的话),后者则毫无可行性可言。

但所有那些大名鼎鼎的密码学算法,AES、RSA、Diffie-Hellman、椭圆曲线,还有所有那些加密软件包,OpenSSL、GnuTLS、Keyczar、你的操作系统的加密 API,都仅仅是计算意义上安全的。

那区别是什么呢?信息论安全的算法肯定是安全的,绝对是,其它那些的算法都可能在理论上被拥有无限计算力的穷举破解。我们依然愉快地使用它们是因为全世界的计算机加起来都不可能在宇宙年龄的时间里破解,至少现在是这样。而这就是我们文章里说的“不安全”。

除非哪个聪明的家伙破解了算法本身 —— 在只需要更少量计算力、在今天可实现的计算力的情况下。这也是每个密码学家梦寐以求的圣杯:破解 AES 本身、破解 RSA 本身等等。

所以现在我们来到了更底层的东西:随机数生成器,你坚持要“真随机”而不是“伪随机”。但是没过一会儿你的真随机数就被喂进了你极为鄙视的伪随机算法里了!

真相是,如果我们最先进的哈希算法被破解了,或者最先进的分组加密算法被破解了,你得到的这些“哲学上不安全”的随机数甚至无所谓了,因为反正你也没有安全的应用方法了。

所以把计算性上安全的随机数喂给你的仅仅是计算性上安全的算法就可以了,换而言之,用 /dev/urandom

Linux 随机数生成器的构架

一种错误的看法

你对内核的随机数生成器的理解很可能是像这样的:

image: mythical structure of the kernel's random number generator

image: mythical structure of the kernel's random number generator

“真正的随机性”,尽管可能有点瑕疵,进入操作系统然后它的熵立刻被加入内部熵计数器。然后经过“矫偏”和“漂白”之后它进入内核的熵池,然后 /dev/random/dev/urandom 从里面生成随机数。

“真”随机数生成器,/dev/random,直接从池里选出随机数,如果熵计数器表示能满足需要的数字大小,那就吐出数字并且减少熵计数。如果不够的话,它会阻塞程序直至有足够的熵进入系统。

这里很重要一环是 /dev/random 几乎只是仅经过必要的“漂白”后就直接把那些进入系统的随机性吐了出来,不经扭曲。

而对 /dev/urandom 来说,事情是一样的。除了当没有足够的熵的时候,它不会阻塞,而会从一直在运行的伪随机数生成器(当然,是密码学安全的,CSPRNG)里吐出“低质量”的随机数。这个 CSPRNG 只会用“真随机数”生成种子一次(或者好几次,这不重要),但你不能特别相信它。

在这种对随机数生成的理解下,很多人会觉得在 Linux 下尽量避免 /dev/urandom 看上去有那么点道理。

因为要么你有足够多的熵,你会相当于用了 /dev/random。要么没有,那你就会从几乎没有高熵输入的 CSPRNG 那里得到一个低质量的随机数。

看上去很邪恶是吧?很不幸的是这种看法是完全错误的。实际上,随机数生成器的构架更像是下面这样的。

更好地简化

Linux 4.8 之前

image: actual structure of the kernel's random number generator before Linux 4.8

image: actual structure of the kernel's random number generator before Linux 4.8

你看到最大的区别了吗?CSPRNG 并不是和随机数生成器一起跑的,它在 /dev/urandom 需要输出但熵不够的时候进行填充。CSPRNG 是整个随机数生成过程的内部组件之一。从来就没有什么 /dev/random 直接从池里输出纯纯的随机性。每个随机源的输入都在 CSPRNG 里充分混合和散列过了,这一切都发生在实际变成一个随机数,被 /dev/urandom 或者 /dev/random 吐出去之前。

另外一个重要的区别是这里没有熵计数器的任何事情,只有预估。一个源给你的熵的量并不是什么很明确能直接得到的数字。你得预估它。注意,如果你太乐观地预估了它,那 /dev/random 最重要的特性——只给出熵允许的随机量——就荡然无存了。很不幸的,预估熵的量是很困难的。

这是个很粗糙的简化。实际上不仅有一个,而是三个熵池。一个主池,另一个给 /dev/random,还有一个给 /dev/urandom,后两者依靠从主池里获取熵。这三个池都有各自的熵计数器,但二级池(后两个)的计数器基本都在 0 附近,而“新鲜”的熵总在需要的时候从主池流过来。同时还有好多混合和回流进系统在同时进行。整个过程对于这篇文档来说都过于复杂了,我们跳过。

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读