为什么完善数据供应链是一种责任
发布时间:2022-08-23 13:12 所属栏目:125 来源:互联网
导读:如今,企业拥有比以往任何时候都要多的数据,数据架构师、分析师和数据科学家在所有业务职能部门中变得越来越普遍。然而,随着企业招募经验丰富的分析师以利用数据做出更好的决策,他们往往无法改善数据供应链和由此产生的数据质量。如果没有可靠的数据供应
如今,企业拥有比以往任何时候都要多的数据,数据架构师、分析师和数据科学家在所有业务职能部门中变得越来越普遍。然而,随着企业招募经验丰富的分析师以利用数据做出更好的决策,他们往往无法改善数据供应链和由此产生的数据质量。如果没有可靠的数据供应链管理实践,数据质量往往会受到影响。 1. 第一公里/最后一公里的影响 第一公里/最后一公里面临的挑战需要从获取数据(上游)开始全面解决供应链问题。拥有可用于分析和决策的数据的紧迫性,促使企业在“最后一公里”投入更多精力——将数据传递给下游的客户。在数据供应链的案例中,客户当然需要对数据进行分析、报告的内部部门或团队。面临挑战是从一开始就正确捕获数据源,并确保在跨数据供应链移动时不会降低数据质量。 2. 供应链复杂性 供应链复杂性是用于描述满足下游需求所需的能力网络的术语。企业所需的供应商、业务部门和分销商的数量越多,就越复杂。 供应链中的每一个额外元素都会增加复杂性,而复杂性越高,越会增加可变性。可变性是质量的主要挑战。在实体供应链中,企业寻求降低上游复杂性。在数据供应链中,内部和外部数据的来源多种多样(来自数据代理、社交媒体/情感分析等),就像实体供应链一样,降低数据供应链的复杂性有助于提高整体质量。 3. 数据监控和报告 数据质量应该是当今大多数企业的关键绩效指标(KPI)。输出的质量取决于输入的质量。例如可以回想以往吃过的美餐,以及是什么让它变得如此美味;当然,企业和环境很重要,但材料的质量直接影响结果——例如新鲜的海鲜总是比冷冻的要好。 企业内部评估数据质量的方法和频率往往各不相同。企业中的不同职能部门可能会使用不同的方法来评估质量;例如,会计部门可能比营销部门更严格。然而,为什么不同的职能应该得到不同的评估?良好的决策依赖于高质量的数据,难道不是每个职能部门都应该尽可能做出最佳决策吗? 推荐的行动计划:建立衡量数据质量的通用公式,并在所有职能部门(数据质量得分)中一致地使用这一衡量标准。评估的数据量要求抽样和估计,并且其方法应该是一致的。一种方法可以是抽取100条记录,检查每条记录并找出任何错误,然后统计无错误记录以了解正确创建的数据百分比。 对于许多企业来说,数据供应链是一个新兴且不断发展的概念。寻找和留住人才以帮助改善数据供应链成果对于企业的竞争优势至关重要。当然,有形产品和无形产品之间存在差异,但许多来自实体世界的概念和工具都可以应用于数据,其结果将与改善实体供应链一样具有影响力。 (编辑:ASP站长网) |
相关内容
网友评论
推荐文章
热点阅读