仅需要几张 2D 卫星图片就能重建洛杉矶 3D 模型
发布时间:2021-12-20 16:31 所属栏目:15 来源:互联网
导读:看到下面这张动图,你会想到什么?是谷歌地球,还是苹果自带的 3D 地图? 其实都不是,它是用卫星和航拍图片直接渲染生成的洛杉矶。很难想象,如此精细的城市 3D 模型,竟然是用几张不同角度和高度的 2D 图片重建的。 这项研究来自香港中文大学多媒体实验室团
看到下面这张动图,你会想到什么?是谷歌地球,还是苹果自带的 3D 地图? 其实都不是,它是用卫星和航拍图片直接渲染生成的洛杉矶。很难想象,如此精细的城市 3D 模型,竟然是用几张不同角度和高度的 2D 图片重建的。 这项研究来自香港中文大学多媒体实验室团队,叫做 CityNeRF。 说到这里,有人应该想到了这两年大热的“神经辐射场”(NeRF),它可以用多张角度照片重建 3D 对象,性能出色。量子位之前对此进行了相关报道和解读。 NeRF 虽然恢复室内场景效果惊艳,但是直接用到城市级的卫星地图上,却面临着巨大的挑战。 首先是拍摄相机有很大的运动自由度。随着相机的上升,场景中的地物外观越来越粗糙,几何细节越来越少,纹理分辨率越来越低。 通过这种方式,CityNeRF 可以稳健地学习跨场景所有尺度的表示层次结构。 CityNeRF 引入了两个特殊的设计: 1、具有残差块结构的生长模型: 在每个训练阶段附加一个额外的块来扩展模型。每个块都有自己的输出 head,用于预测连续阶段之间的颜色和密度残差,促使块在近距离观察中关注新兴细节; 2、包容的多级数据监督: 每个块的输出 head 由从最远尺度到其对应尺度的图像联合监督。 换句话说,最后一个块接受所有训练图像的监督,而最早的块只暴露于最粗尺度的图像。通过这样的设计,每个块模块都能够充分利用其能力,在更近的视图中对复杂的细节进行建模,并保证尺度之间一致的渲染质量。 总体来说,CityNeRF 是一种渐进式学习范式,可同步增长 NeRF 模型和训练集。从用浅基块拟合远景开始,随着训练的进行,添加新的块以适应越来越近的视图中出现的细节。 该策略有效地激活了位置编码中的高频通道,并随着训练的进行展开更复杂的细节。 简而言之,使用基本神经网络多层感知器的权重,NeRF 将提前处理所有图像,知道其观点位置。NeRF 将使用相机的光线找到每个像素的颜色和密度。 因此,它知道相机的方向,并可以同时使用所有数组来了解深度和相应的颜色。然后,使用损失函数优化了神经网络的收敛性, 模型训练数据数据来自 Google Earth Studio 中的 12 个城市图像。结果显示在几种常见重建模型中达到了最佳的效果。 (编辑:ASP站长网) |
相关内容
网友评论
推荐文章
热点阅读