马赛克也可以变高清 超分辨率算法如何实现480P变4K
发布时间:2022-03-04 15:23 所属栏目:15 来源:互联网
导读:相信不少人都喜欢在电脑上观看电影、动漫等视频资源,无论是在本地观看还是在线观看,高清晰度,高分辨率的视频才能带来更好的观看体验。但对于那些怀旧党来说,可能就没那么幸运了。 在过去,受限于技术原因,很多老电影、老动漫的分辨率可能都没有达到720P
相信不少人都喜欢在电脑上观看电影、动漫等视频资源,无论是在本地观看还是在线观看,高清晰度,高分辨率的视频才能带来更好的观看体验。但对于那些怀旧党来说,可能就没那么幸运了。 在过去,受限于技术原因,很多老电影、老动漫的分辨率可能都没有达到720P的水平,这就导致观看体验大打折扣,毕竟在这个4K视频都随处可见的年代,低分辨率的资源确实有点落伍了。 其实就算放眼到整个行业中来看,超高清内容缺乏也是产业普遍存在的痛点,渠道的不完善,拍摄、制作水平的不成熟,技术的不足都成为了阻碍行业发展的绊脚石,为了提高超高清视频的生产能力,同时最大限度地节省成本,就需要人工智能的介入,超分辨率算法就是解决这个问题的很好途径。 图像超分辨率问题研究的是在输入一张低分辨率图像时,如何得到一张高分辨率图像,传统的图像插值算法可以在某种程度上获得这种效果,比如最近邻插值、双线性插值和双三次插值等,但是这些算法获得的高分辨率图像效果并不理想。 在图像处理方面,又一个著名的算法waifu2x,它使用了SRCNN卷积神经算法,SRCNN是首个使用CNN结构(即基于深度学习)的端到端的超分辨率算法,它将整个算法流程用深度学习的方法实现了,并且效果比传统多模块集成的方法好。 SRCNN流程如下:首先输入预处理。对输入的低分辨率LR图像使用bicubic算法进行放大,放大为目标尺寸。 Real-CUGAN的全称为Real Cascaded-U-Net-style Generative Adversarial Networks(真实的、级联U-Net风格的生成对抗网络),使用了与Waifu2x相同的动漫网络结构,但由于使用了新的训练数据与训练方法,从而形成了不同的参数和推理方式。 技术细节方面来看,Real-CUGAN会先行对动漫帧进行切块处理,然后使用图像质量打分模型对候选块进行打分过滤,得到一个百万级的高质量动漫图像块训练集。 然后使用多阶段降质算法,将高清图像块降采样得到低质图像,通过让AI模型学习、优化从低质图像到高质图像的重建过程,训练完毕后即可对真实的二次元低质图像进行高清化处理。 目前Real-CUGAN支持2xxx倍超分辨率,其中2倍模型支持4种降噪强度与保守修复,3倍/4倍模型支持2种降噪强度与保守修复,同时,如果你是Windows用户,作者还贴心地准备了Windows-GUI版本 。 (编辑:ASP站长网) |
相关内容
网友评论
推荐文章
热点阅读