从历史到技术突破 一文看明白火爆的AI绘画发展史
发布时间:2022-09-21 10:17 所属栏目:15 来源:互联网
导读:自从前段时间偶然间被当下AI绘画的水平震住之后 (超越一切的AI作画神器, 和它创作的234个盔甲美女未来战士) , 作者深感当今AI绘画的飞速进展或许已远超所有人的预期. 而这里的前因后果, 包括AI绘画的历史, 以及最近的突破性进展, 值得好好和大伙儿梳理和分享
自从前段时间偶然间被当下AI绘画的水平震住之后 (超越一切的AI作画神器, 和它创作的234个盔甲美女未来战士) , 作者深感当今AI绘画的飞速进展或许已远超所有人的预期. 而这里的前因后果, 包括AI绘画的历史, 以及最近的突破性进展, 值得好好和大伙儿梳理和分享一下. 因此有了本文. 本文分为如下几小节: 1 2022, 进击的AI绘画 2 AI绘画的历史 3 AI绘画何以突飞猛进 4 顶级AI绘画模型的PK 5 AI绘画的突破对人类意味着什么 这是一幅使用AI绘画服务 MidJourney 生成的数字油画, 生成它的用户以这幅画参加美国科罗拉多州博览会的艺术比赛, 夺得了第一名. 这件事被曝光之后引发了网络上巨大的争论至今. 目前 AI绘画的技术仍在不断变化发展中, 其迭代之快, 完全可以用"日新月异"来形容. 即使把今年年初的AI绘画和现在相比, 效果也有天壤之别. 在年初的时候, 用Disco Diffusion可以生成一些很有氛围感的草图, 但基本还无法生成人脸; 仅仅2个月后, DALL-E 2已经可以生成准确的五官; 现在, 最强大的Stable Diffusion在画作的精致程度和作画速度上更是有了一个量级的变化. 计算机是上世纪60年代出现的, 而就在70年代, 一位艺术家,哈罗德·科恩Harold Cohen(画家,加利福尼亚大学圣地亚哥分校的教授) 就开始打造电脑程序"AARON"进行绘画创作. 只是和当下AI绘画输出数字作品有所不同, AARON是真的去控制一个机械臂来作画的. Harold 对 AARON的改进一直持续了几十年, 直到他离世. 在80年代的时候, ARRON"掌握"了三维物体的绘制; 90年代时, AARON能够使用多种颜色进行绘画, 据称直到今天, ARRON仍然在创作. 以上这两个例子算是比较"古典"方式的电脑自动绘画, 有点像一个学步的婴儿, 有一点样子, 但从智能化的角度来看是相当初级的. 在吴恩达和Jeff Dean开创性的猫脸生成模型之后, AI科学家们开始前赴后继投入到这个新的挑战性领域里. 在2014年, AI学术界提出了一个非常重要的深度学习模型, 这就是大名鼎鼎的对抗生成网络GAN (Generative Adverserial Network, GAN)。 正如同其名字"对抗生成", 这个深度学习模型的核心理念是让两个内部程序 "生成器(generator)" 和"判别器(discriminator)" 互相PK平衡之后得到结果。 GAN模型一问世就风靡AI学术界, 在多个领域得到了广泛的应用. 它也随即成为了很多AI绘画模型的基础框架, 其中生成器用来生成图片, 而判别器用来判断图片质量. GAN的出现大大推动了AI绘画的发展。 但是, 用基础的GAN模型进行AI绘画也有比较明显的缺陷, 一方面是对输出结果的控制力很弱, 容易产生随机图像, 而AI艺术家的输出应该是稳定的. 另外一个问题是生成图像的分辨率比较低。 (编辑:ASP站长网) |
相关内容
网友评论
推荐文章
热点阅读