机器学习算法优缺点对比及选择(汇总篇)
本文的目的,是务实、简洁地盘点一番当前机器学习算法。文中内容结合了个人在查阅资料过程中收集到的前人总结,同时添加了部分自身总结,在这里,依据实际使用中的经验,将对此类模型优缺点及选择详加讨论。 主要回顾下几个常用算法的适应场景及其优缺点! 机器学习算法太多了,分类、回归、聚类、推荐、图像识别领域等等,要想找到一个合适算法真的不容易,所以在实际应用中,我们一般都是采用启发式学习方式来实验。通常最开始我们都会选择大家普遍认同的算法,诸如SVM,GBDT,Adaboost,现在深度学习很火热,神经网络也是一个不错的选择。 假如你在乎精度(accuracy)的话,最好的方法就是通过交叉验证(cross-validation)对各个算法一个个地进行测试,进行比较,然后调整参数确保每个算法达到最优解,最后选择最好的一个。但是如果你只是在寻找一个“足够好”的算法来解决你的问题,或者这里有些技巧可以参考,下面来分析下各个算法的优缺点,基于算法的优缺点,更易于我们去选择它。 1.天下没有免费的午餐 在机器学习领域,一个基本的定理就是“没有免费的午餐”。换言之,就是没有算法能完美地解决所有问题,尤其是对监督学习而言(例如预测建模)。 举例来说,你不能去说神经网络任何情况下都能比决策树更有优势,反之亦然。它们要受很多因素的影响,比如你的数据集的规模或结构。 其结果是,在用给定的测试集来评估性能并挑选算法时,你应当根据具体的问题来采用不同的算法。 当然,所选的算法必须要适用于你自己的问题,这就要求选择正确的机器学习任务。作为类比,如果你需要打扫房子,你可能会用到吸尘器、扫帚或是拖把,但你绝对不该掏出铲子来挖地。 2. 偏差&方差 在统计学中,一个模型好坏,是根据偏差和方差来衡量的,所以我们先来普及一下偏差(bias)和方差(variance): 1. 偏差:描述的是预测值(估计值)的期望E’与真实值Y之间的差距。偏差越大,越偏离真实数据。 2. 方差:描述的是预测值P的变化范围,离散程度,是预测值的方差,也就是离其期望值E的距离。方差越大,数据的分布越分散。 模型的真实误差是两者之和,如公式: 通常情况下,如果是小训练集,高偏差/低方差的分类器(例如,朴素贝叶斯NB)要比低偏差/高方差大分类的优势大(例如,KNN),因为后者会发生过拟合(overfiting)。然而,随着你训练集的增长,模型对于原数据的预测能力就越好,偏差就会降低,此时低偏差/高方差的分类器就会渐渐的表现其优势(因为它们有较低的渐近误差),而高偏差分类器这时已经不足以提供准确的模型了。 为什么说朴素贝叶斯是高偏差低方差? 首先,假设你知道训练集和测试集的关系。简单来讲是我们要在训练集上学习一个模型,然后拿到测试集去用,效果好不好要根据测试集的错误率来衡量。但很多时候,我们只能假设测试集和训练集的是符合同一个数据分布的,但却拿不到真正的测试数据。这时候怎么在只看到训练错误率的情况下,去衡量测试错误率呢? 由于训练样本很少(至少不足够多),所以通过训练集得到的模型,总不是真正正确的。(就算在训练集上正确率100%,也不能说明它刻画了真实的数据分布,要知道刻画真实的数据分布才是我们的目的,而不是只刻画训练集的有限的数据点)。 而且,实际中,训练样本往往还有一定的噪音误差,所以如果太追求在训练集上的完美而采用一个很复杂的模型,会使得模型把训练集里面的误差都当成了真实的数据分布特征,从而得到错误的数据分布估计。这样的话,到了真正的测试集上就错的一塌糊涂了(这种现象叫过拟合)。但是也不能用太简单的模型,否则在数据分布比较复杂的时候,模型就不足以刻画数据分布了(体现为连在训练集上的错误率都很高,这种现象较欠拟合)。过拟合表明采用的模型比真实的数据分布更复杂,而欠拟合表示采用的模型比真实的数据分布要简单。 在统计学习框架下,大家刻画模型复杂度的时候,有这么个观点,认为Error = Bias + Variance。这里的Error大概可以理解为模型的预测错误率,是有两部分组成的,一部分是由于模型太简单而带来的估计不准确的部分(Bias),另一部分是由于模型太复杂而带来的更大的变化空间和不确定性(Variance)。 所以,这样就容易分析朴素贝叶斯了。它简单的假设了各个数据之间是无关的,是一个被严重简化了的模型。所以,对于这样一个简单模型,大部分场合都会Bias部分大于Variance部分,也就是说高偏差而低方差。 在实际中,为了让Error尽量小,我们在选择模型的时候需要平衡Bias和Variance所占的比例,也就是平衡over-fitting和under-fitting。 当模型复杂度上升的时候,偏差会逐渐变小,而方差会逐渐变大。 3. 常见算法优缺点 3.1 朴素贝叶斯 朴素贝叶斯属于生成式模型(关于生成模型和判别式模型,主要还是在于是否需要求联合分布),比较简单,你只需做一堆计数即可。如果注有条件独立性假设(一个比较严格的条件),朴素贝叶斯分类器的收敛速度将快于判别模型,比如逻辑回归,所以你只需要较少的训练数据即可。即使NB条件独立假设不成立,NB分类器在实践中仍然表现的很出色。它的主要缺点是它不能学习特征间的相互作用,用mRMR中R来讲,就是特征冗余。引用一个比较经典的例子,比如,虽然你喜欢Brad Pitt和Tom Cruise的电影,但是它不能学习出你不喜欢他们在一起演的电影。 优点: 1. 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率; 2. 对大数量训练和查询时具有较高的速度。即使使用超大规模的训练集,针对每个项目通常也只会有相对较少的特征数,并且对项目的训练和分类也仅仅是特征概率的数学运算而已; 3. 对小规模的数据表现很好,能个处理多分类任务,适合增量式训练(即可以实时的对新增的样本进行训练); 4. 对缺失数据不太敏感,算法也比较简单,常用于文本分类; 5. 朴素贝叶斯对结果解释容易理解。 缺点: 1. 需要计算先验概率; 2. 分类决策存在错误率; 3. 对输入数据的表达形式很敏感; 4. 由于使用了样本属性独立性的假设,所以如果样本属性有关联时其效果不好。 朴素贝叶斯应用领域 1. 欺诈检测中使用较多; 2. 一封电子邮件是否是垃圾邮件; 3. 一篇文章应该分到科技、政治,还是体育类; 4. 一段文字表达的是积极的情绪还是消极的情绪; 5. 人脸识别。 3.2 Logistic Regression(逻辑回归) (编辑:ASP站长网) |