设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 重新 试卷 文件
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

2019深度学习框架排行榜 (从TOP 10到TOP 3)

发布时间:2019-08-02 10:12 所属栏目:19 来源:球状闪电
导读:【51CTO.com原创稿件】 1. 写在前面 5G可以说是2019年上半年十分闪耀的那颗星了,美方还不惜代价地试图封锁中国的5G技术出海。5G之所以重要,是因为其将和AI技术,大数据技术一道颠覆我们现有的生活模式,让智能化成为现实。 在智能化的世界,5G技术提供高

【51CTO.com原创稿件】

2019深度学习框架排行榜 (从TOP 10到TOP 3)

1. 写在前面

5G可以说是2019年上半年十分闪耀的那颗“星”了,美方还不惜代价地试图封锁中国的5G技术出海。5G之所以重要,是因为其将和AI技术,大数据技术一道颠覆我们现有的生活模式,让智能化成为现实。

在智能化的世界,5G技术提供高速率(>1 Gbps),低延时(1ms)的基础网络服务,组建物联网(IoT,Internet of Things),大数据技术提供对万物互联产生的海量数据的整合能力,而AI技术则提供整个智能生态的计算与决策能力,深度学习技术是非常高效的实现方式,在过去10年,已被学术界和工业界反复证实是一剂“灵丹妙药”,依靠各种模型、算法可以比人类判断得更精准、更快速。

2019深度学习框架排行榜 (从TOP 10到TOP 3)

Figure 1 智能时代

技术需要高效的模式来实现应用,深度学习框架就是那个实现“灵药“的“炼丹炉”,能够通过深度学习算法模块化的封装,快速搭建模型,输入数据,进行各种模型的训练,调优,测试和部署,为整个智能生态提供预测,决策等核心推断能力。

2. 深度学习框架排行榜

得益于深度学习框架发展初期各家为更好地推动技术发展而造就的开源生态模式,如今,深度学习框架百花齐放,百家争鸣,快速推动了深度技术在工业界的落地应用。当然,好“药”也得有好“炉”炼,下面我们就介绍下目前主流的深度学习框架的发展状况,各自的特点以及适合的场景等,希望能够帮助大家找到合适的“炉”。

下文将从业界影响、资源投入、开发生态、文档体系、模型全面性、工业实践和开源热度(GitHub)等七个方面评估各框架的发展状况,结果如下图(供参考)。

2019深度学习框架排行榜 (从TOP 10到TOP 3)

Figure 2 十大深度学习框架发展程度(caffe,caffe2分开统计)

再来看一下GitHub对应的一些数据情况,Pytorch,TensorFlow,PaddlePaddle过去两年保持了较快的发展速度,尤其是Pytorch的星数增长了3倍,获得了颇多关注。而Caffe&Caffe2,Theano,CNTK等,虽然已经停止迭代,但得益于产业的快速发展,GitHub星数仍有一定增长。

2019深度学习框架排行榜 (从TOP 10到TOP 3)

Figure 3 十大深度学习框架GitHub数据变化(caffe,caffe2分开统计)

2019深度学习框架排行榜 (从TOP 10到TOP 3)

Figure 4 十大深度学习框架增长率(caffe,caffe2分开统计)

3. 十大深度学习框架详解

2019深度学习框架排行榜 (从TOP 10到TOP 3)

TensorFlow

2019深度学习框架排行榜 (从TOP 10到TOP 3)

Google的TensorFlow,可以说是当今十分流行的深度学习框架。Airbnb,DeepMind,Intel,Nvidia,Twitter以及许多其他著名公司都在使用它。

Google自开源TensorFlow起,投入大量的人力,物力,财力,逐步构建了一个AI生态,从基础研究、AI教育再到应用实现,而这个生态的核心就是TensorFlow。如前所说,深度学习是AIoT时代的基石,毫无疑问,Google依然走在时代转折点的前列。

TensorFlow提供全面的服务,无论是Python,C++,JAVA,Go,甚至是JavaScript,Julia,C#,几乎所有开发者都可以从熟悉的语言入手开始深度学习的旅程。TensorFlow构建了活跃的社区,完善的文档体系,大大降低了我们的学习成本,不过社区和文档主要以英文为主,中文支持有待加强。另外,TensorFlow有很直观的计算图可视化呈现。模型能够快速的部署在各种硬件机器上,从高性能的计算机到移动设备,再到更小的更轻量的智能终端。

TensorFlow的缺点已经被诟病多年,相比Pytorch,Caffe等框架,TensorFlow的计算速度可以说是“牛拉车“。而且通过它构建一个深度学习框架需要更复杂的代码,还要忍受重复的多次构建静态图。

但综合来说,对于英文阅读和英文交流毫无障碍的同学,TensorFlow依然是深度学习框架的优选方案。

2019深度学习框架排行榜 (从TOP 10到TOP 3)

Pytorch

2019深度学习框架排行榜 (从TOP 10到TOP 3)

Pytorch是基于用Lua编写的Torch库的Python实现的深度学习库,它由Facebook创建,目前被广泛应用于学术界和工业界,随着Caffe2项目并入Pytorch, Pytorch开始威胁到TensorFlow在深度学习应用框架领域的地位。

Pytorch官网的标题语简明地描述了Pytorch的特点以及将要发力的方向。Pytorch在学术界优势很大,关于用到深度学习模型的文章,除了Google的,其他大部分都是通过Pytorch进行实验的,究其原因,一是Pytorch库足够简单,跟NumPy,SciPy等可以无缝连接,而且基于tensor的GPU加速非常给力,二是训练网络迭代的核心-梯度的计算,Autograd架构(借鉴于Chainer),基于Pytorch,我们可以动态地设计网络,而无需笨拙地定义静态网络图,才能去进行计算,想要对网络有任务修改,都要从头开始构建静态图。基于简单,灵活的设计,Pytorch快速成为了学术界的主流深度学习框架。

Pytorch的劣势在于模型部署,由于对其部署难度早有耳闻,我没尝试过部署Pytorch的模型,一般是在Pytorch快速的试验新的模型,确认好的效果再去找“现成的”的TensorFlow模型做简单的优化。

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读