设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 重新 试卷 文件
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

2019深度学习框架排行榜 (从TOP 10到TOP 3)(3)

发布时间:2019-08-02 10:12 所属栏目:19 来源:球状闪电
导读:CNTK是由微软开发的深度学习框架,是一个用于商业级分布式深度学习的开源工具包。它通过定向图将神经网络描述为一系列计算步骤,支持DNNs,CNNs以及自由组合的模型。今年,CNTK团队也宣布不再更新项目,让人唏嘘。

CNTK是由微软开发的深度学习框架,是一个用于商业级分布式深度学习的开源工具包。它通过定向图将神经网络描述为一系列计算步骤,支持DNNs,CNNs以及自由组合的模型。今年,CNTK团队也宣布不再更新项目,让人唏嘘。

总的来说,各家的深度学习框架各有千秋,重要的是找到适合自己团队的,能够快速匹配团队的技术栈,快速试验以期发挥深度学习技术应用落地的商业价值。

4. 如何选择?

那么如何在众多的框架中做选择呢?我推荐这3个框架:TensorFlow,Pytorch,飞桨。其他框架不是投入资源有限,就是已经不再维护了。实际上,我们都应该或多或少地去了解这3个框架,根据自己的实际情况可以快速选型。

如果是刚刚接触深度学习,以学习为目的的开发者,我建议从TensorFlow和飞桨开始上手,至少目前来看,Google和百度是倾全力打造这两个平台的,他们已经不只是一个深度学习框架了,更是一个AI开发的生态,从基础的视频课程,完善的文档体系到项目的开放落地提供的是统一的服务。多说一句,百度飞桨的基础文档相当详细,不仅有代码实现,数据流过程的教程,同时也包含了详细的算法原理,这点为那些还不是那么了解相应模型的同学带来极大的方便。对于学有余力的同学,我建议这3个框架都可以去了解下。

如果是出于学术目的,建议从Pytorch开始,毕竟学术研究要紧盯着前沿,看文章,复现文章中模型的效果,选大家都用的可以节省不必要的时间成本,把重点放在优化模型提升模型效果上。

如果是想要开箱即用,想将深度学习技术快速应用到自己的场景中尝试,我建议选择飞桨,飞桨中有大量的实战案例,套到相应的场景基本就能迭代起来了。而且在NLP领域,需要对各种语言进行预处理,毫无疑问对中文支持更好的是飞桨,比如ERNIE,其挖掘海量的中文数据,对先验语义知识进行建模,增强了语义表达能力,可以作为NLP,NLU应用的基础服务不同的场景。

随手贴几个招聘网站上的JD,也可以帮大家明确一下方向,供参考。

2019深度学习框架排行榜 (从TOP 10到TOP 3)

2019深度学习框架排行榜 (从TOP 10到TOP 3)

2019深度学习框架排行榜 (从TOP 10到TOP 3)

5. 未来

我们处在更好的时代。

感谢互联网文化,感谢开源文化,让技术可以以指数级的速度发展,我们更要感谢在时代转折点的那些引路人,没有Google、百度等企业不遗余力地尝试将新技术应用于各产业,就没有技术的飞速发展,就没有更美好的生活模式的变迁。

AI技术的平民化是智能时代发展的催化剂,我们应用深度学习技术,从原理到框架,再到应用平台化工具将其落地到所有的场景,这是未来的发展趋势。得益于5G技术的发展,相信在不久的将来,我们将实现万物互联。深度学习是AIoT时代的关键,各平台已有的实践落地项目给我们提供了产业落地的实现路径。可谓星星之火,渐成燎原之势,另外,发展我国自己的AI开发生态也同样重要,考虑到近期的“华为事件”,有备无患。

最后,我想说的是,框架、平台都只是为我们提供了工具,我们得明确目标并找到合适的场景,推进应用在业务上的落地,实现商业价值才能拥有核心竞争力。

2019深度学习框架排行榜 (从TOP 10到TOP 3)

6. 参考

  1.  https://www.techspot.com/article/1582-state-of-5g-wireless/
  2.  https://www.tensorflow.org/
  3.  https://pytorch.org/
  4.  https://www.paddlepaddle.org.cn/
  5.  https://deeplearning4j.org/
  6.  https://chainer.org/
  7.  https://mxnet.incubator.apache.org/
  8.  https://keras.io/
  9.  https://github.com/Theano/Theano
  10.  https://docs.microsoft.com/en-us/cognitive-toolkit/
  11.  https://binaryinformatics.com/pytorch-vs-tensorflow/
  12.  https://www.springboard.com/blog/deep-learning-frameworks/

【51CTO原创稿件,合作站点转载请注明原文作者和出处为51CTO.com】

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读