拥抱大数据时代 分析数据大价值
继云计算之后,"大数据时代"这一热词成为媒体争相追逐的焦点。那么,何为大数据,大数据价值几许?大数据时代又会给业界带来哪些机遇和挑战呢?
大数据时代悄然来临
不是我不明白,这世界变化快12000年还是一张软盘打天下的时代,短短十多年光景,硬盘的存储容量已从4GB、16GB、32GB迅速攀升到1TB.原来仅有1.44MB的软盘在当时感觉存储容量还是蛮大的,到现在硬盘容量蹿升至1TB了,反而感觉存储空间捉襟见肘,到底是哪里出现了问题?
大数据!一语惊醒梦中人,大数据时代已经悄然来临。随着社交网络的逐渐成熟,移动带宽迅速提升,云计算、物联网应用更加丰富。更多的传感设备、移动终端接入到网络,由此产生的数据及增长速度迅速攀升。
一项由UnisohereResearch对531名独立Oracle用户进行的调查发现,90%的企业的数据量在迅速上涨,其中16%的企业的数据量每年增长率达到50%或更高。不少企业已经感受到失控的数据增长对绩效造成的冲击,其中87%的受访者将企业的应用程序性能下降归咎于不断增长的数据量。调研机构IDC在2011年6月的报告则显示,全球数据量在2011年已达到1.8ZB,在过去5年里增加了5倍。
1.8ZB是什么样的概念呢?首先从二进制上解读一下,从我们最熟悉的GB开始,1TB(TrillionByte)=1024GB;1PB(PetaByte)=1024TB;1EB(ExaByte)=1024PB;1ZB(ZettaByte)=1024 EB;1YB(YottaByte)=1024 ZB;1BB(BrontoByte)=1024YB.
再来直接形象地形容一下1.8ZB的数据量,如果把所有这些数据都刻录存入普通DVD光盘里,光盘的高度将等同于从地球到月球的一个半来回也就是大约720000英里。相当于每位美国人每分钟写3条Twitter微博,而且还要不停地写2.6976万年,是不是很恐怖?这还不是最恐怖的,IDC还预测全球数据量大约每两年翻一番,2015年全球数据量将达到近8ZB,到2020年,全球将达到35ZB.
所谓的大数据最直白的理解是海量数据,通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费很多时间和金钱。调研机构IDC认为,某项技术要想成为大数据技术,必须满足IBM所描述的三个"V"条件,即多样性(Variety)、大容量(Volume)和时效性高(Velocity)。多样性是指数据应包含结构化的和非结构化的数据;大容量是指聚合在一起供分析的数据量必须是非常庞大的;时效性高则是指数据处理的速度必须很快。
大数据中的大价值
现在有很多通过大数据分析受益的经典案例。在科研民生领域,美国的海啸预警系统一直为人们津津乐道,去年3月11日日本大地震发生后仅9分钟,美国国家海洋和大气管理局(NOAA)就发布了详细的海啸预警。随即,NOAA通过对海洋传感器获得的实时数据进行计算机模拟,制作的海啸影响模型便出现在YouTube等网站。大数据分析在指导人们有效规避自然灾害面前发挥了很大的作用。
而在商业领域,eBay则很好地起到了示范作用。eBay定义了超过500种类型的数据,对顾客的行为进行跟踪分析,每天处理的数据量高达100PB,通过准确分析用户的购物行为,达到了减少广告投入、稳定高端卖家、实现持续增长的目的。
通过上述两个案例不难看到,大数据分析的价值是非常大的。伴随着传统的商业智能系统向纵深应用的拓展,企业也逐渐步入到大数据时代。传统的标准化、结构化的数据只占到15%左右,85%的数据来源于广泛存在于社交网络、物联网、电子商务等中的非结构化数据。这些非结构化数据的产生往往伴随着社交网络、移动计算和传感器等新的渠道和技术的不断涌现和应用。
企业用来分析的数据越全面,分析的结果就越接近于真实,因此,大数据具有很大的商业价值。大数据分析是企业在未来发展过程中必须面对的,大数据分析意味着企业能够从这些新的数据中获取新的洞察力,并将它与已知业务的各个细节相融合。只有那些能够运用这些新数据形态的企业,方能打造可持续发展的竞争优势。[page] 淘金大数据时代
云计算和大数据是2012年IT业界密切关注,且又最为火热的两大关键词,对于嗅觉相当灵敏的IT业界,很多企业早已嗅出了商机。以投资Facebook而闻名的风投公司AccelPartners认为:大数据是信息技术未来发展的战略走向,将催生下一代价值数万亿美元的软件企业。
大数据跟普通数据一样,从产生到处理,再到价值提取,再到最后被消费掉,都有一个过程,每个步骤中都存在着不同的商业需求,目前已经有企业开始深耕细作或正在跑马圈地。
首先是雅虎的大数据系统Hadoop,它已经在大数据时代崭露头角,因它提供了廉价的大数据分析处理功能,从而被业界冠以打开数据之门的金钥匙。Hadoop能将大数据分解成多个子问题,将它们分配到成百上千个处理节点之上,能够在最短的时间内处理海量的数据,最后再将处理结果汇集到一个小数据库集中,从而更容易分析并得出最后的结果。Hadoop已经成为AOL、Facebook和Twitter这些公司进行大数据分析的主要提供商。一批着名的大企业如谷歌、雅虎、JP摩根大通等,也成功利用Hadoop开发出了开源的大数据管理系统。不仅如此,微软也向Hadoop抛出了橄榄枝,并且决定将Hadoop作为自身大数据战略的核心。Hadoop的明星范儿,让人们看到了Hadoop在解决大数据难题时的巨大潜力。
其次,IBM凭借在硬件与软件方面的优势,提供端到端、整体的大数据解决方案。此外,在数据存储、分析等领域有着传统优势的厂商,如惠普、甲骨文等公司,在大数据分析领域也有着明显的优势。2011年10月,甲骨文发布了新版NoSQL数据库企业版,这是运行于Hadoop之上的大数据软件之一。除了花大力气开发自有技术,更多的企业希望通过合作与并购的方式来迅速弥补技术链条上的不足。微软宣布与Hortonwork公司建立新的合作伙伴关系,后者致力于Hadoop开发。为了增强非传统数据分析的能力,Teradata收购了Aster Data公司。在2011年,面对高速增长的大数据分析,IBM提出了"智慧的运算",其内容包含大规模数据整合、优化的系统,以及云计算等新兴服务交付模式。伴随着全新的zEnterprise 114大型机产品的发布,zEnterprise System企业级大型机已经作为"系统中的系统"来全面实现"智慧的运算".
(编辑:ASP站长网) |