深解京东个性化推荐系统演进史(2)
个性化推荐架构 在起步初期,推荐产品比较简单,每个推荐产品都是独立服务实现。新版推荐系统是一个系统性工程,其依赖数据、架构、算法、人机交互等环节的有机结合。新版推荐系统的目标,是通过个性化数据挖掘、机器学习等技术,将“千人一面”变为“千人千面”,提高用户忠诚度和用户体验,提高用户购物决策的质量和效率;提高网站交叉销售能力,缩短用户购物路径,提高流量转化率(CVR)。目前新版推荐系统支持多类型个性化推荐,包括商品、店铺、品牌、活动、优惠券、楼层等。新版个性化推荐系统架构如图 4 所示。 图4 新版个性化推荐系统架构 个性化推荐系统架构图中不同的颜色代表不同的业务处理场景:数据处理部分(最底层绿色模块),包括离线数据预处理、机器学习模型训练,以及在线实时行为的接入、实时特征计算。推荐平台(蓝色模块),主要体现响应用户请求时推荐系统的各服务模块之间的交互关系。推荐系统核心模块:
|