设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 手机 数据 公司
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

深解京东个性化推荐系统演进史(5)

发布时间:2018-02-05 06:42 所属栏目:19 来源:人人都是产品经理
导读:京东大数据有别于其他厂商的地方就是京东拥有最长的价值链和全流程的数据积累。京东数据的特征非常全面,数据链记录着每个用户的每一步操作:从登录到搜索、浏览、选择商品、页面停留时间、评论阅读、是否关注促销

京东大数据有别于其他厂商的地方就是京东拥有最长的价值链和全流程的数据积累。京东数据的特征非常全面,数据链记录着每个用户的每一步操作:从登录到搜索、浏览、选择商品、页面停留时间、评论阅读、是否关注促销,以及加入购物车、下订单、付款、配送方式,最终是否有售后和返修,整个用户的购物行为完整数据都被记录下来。通过对这些用户行为及相关场景的分析,构建了京东用户画像,如图 10 所示。

其中不仅有用户的年龄、性别、购物习惯,更有根据其购物行为分析出的大量数据,例如是否已婚,是否有孩子,对促销是否敏感等。另外,实时用户画像可以秒级分析出用户的购买意图,以及实时兴趣偏好。京东推荐用户画像技术体系如图 11 所示。

用户画像在京东各终端的推荐产品中都有应用, 618 推出的智能卖场是用户画像的典型应用场景。智能卖场的产品包括发现好货、个性化楼层、秒杀、活动、优惠券、分类、标签等。以秒杀为例,推荐结果会根据当前用户的用户画像中的画像模型(性别、年龄、促销敏感度、品类偏好、购买力)进行加权,让用户最感兴趣的商品排在前面。

用户画像也是场景推荐的核心基础。以东家小院为例,根据用户的历史行为汇聚出很多场景标签,按当前用户的画像模型,调整场景标签的排序。如用户选择“包治百病”标签,会按用户画像中的性别、年龄、品类、促销敏感度等画像模型进行推荐商品的重排序。

图10 用户画像示意图

图11 京东推荐用户画像技术体系

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读