设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 手机 数据 公司
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

深解京东个性化推荐系统演进史(3)

发布时间:2018-02-05 06:42 所属栏目:19 来源:人人都是产品经理
导读:特征服务平台。负责为个性服务提供特征数据和特征计算,特征服务平台主要针对 特征数据,进行有效的声明、管理,进而达到特征资源的共享,快速支持针对不同的特征进行有效的声明、上线、测试以及A/B实验效果对比。

特征服务平台。负责为个性服务提供特征数据和特征计算,特征服务平台主要针对 特征数据,进行有效的声明、管理,进而达到特征资源的共享,快速支持针对不同的特征进行有效的声明、上线、测试以及A/B实验效果对比。

个性化技术(橙色模块),个性化主要通过特征和算法训练模型来进行重排序,达到精准推荐的目的。特征服务平台主要用于提供大量多维度的特征信息,推荐场景回放技术是指通过用户实时场景特征信息反馈到推荐排序,在线学习(Online-Learning)和深度学习都是大规模特征计算的个性化服务。

个性化推荐系统的主要优势体现为支持多类型推荐和多屏产品形态,支持算法模型A/B实验快速迭代,支持系统架构与算法解耦,支持存储资源与推荐引擎计算的解耦,支持预测召回与推荐引擎计算的解耦,支持自定义埋点功能;推荐特征数据服务平台化,支持推荐场景回放。

数据平台

京东拥有庞大的用户量和全品类的商品以及多种促销活动,可以根据用户在京东平台上的行为记录积累数据,如浏览、加购物车、关注、搜索、购买、评论等行为数据,以及商品本身的品牌、品类、描述、价格等属性数据的积累,活动、素材等资源的数据积累。这些数据是大规模机器学习的基础,也是更精确地进行个性化推荐的前提。

数据收集

用户行为数据收集流程一般是用户在京东平台(京东App、京东PC网站、微信手Q)上相关操作,都会触发埋点请求点击流系统(专门用于收集行为数据的平台系统)。点击流系统接到请求后,进行实时消息发送(用于实时计算业务消费)和落本地日志(用于离线模型计算),定时自动抽取行为日志到大数据平台中心。算法人员在数据集市上通过机器学习训练模型,这些算法模型应用于推荐服务,推荐服务辅助用户决策,进一步影响用户的购物行为,购物行为数据再发送到点击流,从而达到数据收集闭环。

离线计算

目前离线计算平台涉及的计算内容主要有离线模型、离线特征、用户画像、商品画像、用户行为,离线计算主要在Hadoop上运行MapReduce,也有部分在Spark平台上计算,计算的结果通过公共导数工具导入存储库。团队考虑到业务种类繁多、类型复杂以及存储类型多样,开发了插件化导数工具,降低离线数据开发及维护的成本。数据离线计算架构如图 5 所示。

图5 数据离线计算架构

在线计算

目前在线计算的范围主要有用户实时行为、用户实时画像、用户实时反馈、实时交互特征计算等。在线计算是根据业务需求,快速捕捉用户的兴趣和场景特征,从而实时反馈 到用户的推荐结果及排序,给用户专属的个性化体验。在线计算的实现消息主要来源于Kafka集群的消息订阅和JMQ消息订阅,通过Storm集群或Spark集群实时消费,推送到Redis集群和HBase集群存储。数据在线计算框架如图 6 所示。

图6 数据在线计算架构

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读